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ABSTRACT

Recent research explores incorporating knowledge graphs (KG)
into e-commerce recommender systems, not only to achieve better
recommendation performance, but more importantly to generate
explanations of why particular decisions are made. This can be
achieved by explicit KG reasoning, where a model starts from a user
node, sequentially determines the next step, and walks towards
an item node of potential interest to the user. However, this is
challenging due to the huge search space, unknown destination, and
sparse signals over the KG, so informative and effective guidance
is needed to achieve a satisfactory recommendation quality. To
this end, we propose a CoArse-to-FinE neural symbolic reasoning
approach (Cafe). It first generates user profiles as coarse sketches
of user behaviors, which subsequently guide a path-finding process
to derive reasoning paths for recommendations as fine-grained
predictions. User profiles can capture prominent user behaviors
from the history, and provide valuable signals about which kinds of
path patterns are more likely to lead to potential items of interest
for the user. To better exploit the user profiles, an improved path-
finding algorithm called Profile-guided Path Reasoning (PPR) is
also developed, which leverages an inventory of neural symbolic
reasoning modules to effectively and efficiently find a batch of paths
over a large-scale KG.We extensively experiment on four real-world
benchmarks and observe substantial gains in the recommendation
performance compared with state-of-the-art methods.
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Figure 1: A motivating example of KG reasoning for e-

commerce recommendation. Given the start user, the target

destinations (i.e., items to recommend) are unknown before-

hand. The goal is – guided by user behavior patterns (bold

edges) – to sequentially determine the next step traversing

the KG towards potential items of interest as recommen-

dations (e.g., Screen protector and Surface Dock). Two possi-

ble reasoning paths are marked with red arrows, which are

taken as explanations to the recommendations.
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1 INTRODUCTION

Recommender systems on modern e-commerce platforms serve to
support the personalization of the customer shopping experience
by presenting potential products of interest to users [15, 37]. They
draw on diverse forms of historical user behavior, including but not
limited to past browsing and previously purchased products, writ-
ten reviews, as well as added favorites [11]. Themodels are expected
to capture customized patterns of user preference across products,
and hence can be leveraged to provide more accurate recommenda-
tions [27]. In addition to accuracy-driven recommendation, it has
become increasingly important in modern e-commerce systems to
present auxiliary explanations of the recommendations [49], i.e.,
the system aims to supply customers with product recommenda-
tions accompanied by informative explanations about why those
products are being recommended.

In this regard, knowledge graphs (KG) [19] have recently come
to prominence to address both requirements. A KG can not only
provide abundant information about users and items, but can also
enable explainable recommendations via explicit KG reasoning
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[1, 43, 46]: Starting from a user node, the system sequentially deter-
mines the next-hop nodes, and moves towards potential items of
interest for the user. The derived path explicitly traces the decision-
making process and can naturally be regarded as an explanation for
the recommended item. For instance, as shown in Fig. 1, one possible

reasoning path is User
Comment
−−−−−−−−→ “Scratch-proof”

Described_by−1
−−−−−−−−−−−−−→

“Screen protector”, where the product “Screen protector” is directly
used as a recommendation.

AlthoughKG reasoning for explainable recommendation is promis-
ing, several issues still remain to be addressed. First, in order to
make use of the reasoning paths to explain the decision-making pro-
cess, the recommendations are supposed to be derived along with
the KG reasoning. However, many existing approaches [1, 44] first
predict the items to be recommended, and subsequently conduct a
separate search for paths matching the user–item pair. Addressing
these tasks in isolation means that the explanation may not reflect
the actual decision making process for the recommendation. More-
over, this fails to allow the recommendation decision making to
benefit from the KG reasoning process. We discuss this further in
Section 2.3.

Second, previous work on KG reasoning has largely neglected
the diversity of user behavior in the historical activity data. Most
approaches consider only item-side knowledge integrated from
external sources, such as Freebase [43, 52] or product graphs [1, 12],
restricting user-side information to simple user interactions (e.g.,
purchasing a product or rating a movie). However, in e-commerce
recommendation, user purchases may be triggered by different
aspects of past behavior. As an example, in Fig. 1, the user hav-
ing purchased product “Pixel 4” may contribute to the keyword
“Camera” that the user mentioned in the comment, or to the brand
(“Google”) of some product (“Home Mini”) owned by the user. User
behavior patterns of this sort can be extracted to guide future rec-
ommendations (“Screen protectors” or “Surface Dock”).

Last but not least, a lack of effective guidance on path reasoning
makes it less efficient in finding potential paths in the large search
space of the KG. Due to the large scale of the KG and the unknown
destination before path-finding, in practice, it is infeasible to follow
previous methods that enumerate paths among all user–item pairs
to choose the best one. Other works [29, 46] adopt reward shaping
from reinforcement learning [40] to alleviate the issue. However,
the reward signal is sparse and cannot effectively and efficiently
guide the model to arrive at correct items for recommendation.

In this paper, we seek to answer the following three questions
regarding the task of KG reasoning for explainable recommenda-
tion: 1) Instead of isolating recommendation and path-finding, how
to directly perform path reasoning to arrive at items of interest so
that the derived paths can explain the recommendation process?
2) Besides rich item-side information, how to explicitly model di-
verse user behaviors from historical activities so that they can be
exploited to provide good guidance in finding potential paths? 3)
Upon modeling behavior, how to exploit the user model to conduct
the path reasoning in a both effective and efficient manner?

To this end, we propose a CoArse-to-FinE neural symbolic rea-
soning method (Cafe), which first generates a coarse sketch of past
user behavior, and then conducts path reasoning to derive recom-
mendations based on the user model for fine-grained modeling. We

draw inspiration from the literature in linguistics [2, 35], where
the human writing process consists of multiple stages focusing on
different levels of granularity. This has also been invoked in NLP
tasks such as long review generation, where coarse-level aspects
are first sketched to guide the subsequent long text generation
[10, 14, 25]. In this work, we first compose a personalized user
profile consisting of diverse user-centric patterns, each of which
captures prominent coarse-grained behavior from historical user
activities. Each profile can provide effective guidance on what pat-
terns of reasoning paths may more likely lead to potential items of
interest for a given user. To fully exploit the profile, we maintain
an inventory of neural symbolic reasoning modules and accord-
ingly design a path-finding algorithm to efficiently conduct batch
path reasoning under the guidance of such profiles. Recommenda-
tions are consequently acquired from the batch of reasoning paths
produced by the algorithm.

This paper makes four key contributions.
• First, we highlight important shortcomings of past KG reason-
ing approaches for explainable recommendation, where path-
reasoning and recommendation are addressed in isolation.
• Second, we introduce a coarse-to-fine paradigm to approach the
problem by explicitly injecting diverse user behavior modeling
into the KG reasoning process.
• Third, we propose a novel profile-guided path reasoning algo-
rithm with neural symbolic reasoning modules to effectively and
efficiently find potential paths for recommendations.
• Fourth, we experiment on four real-world e-commerce datasets
showing that our model yields high-quality recommendation
results and the designed components are effective.

2 PRELIMINARIES

2.1 Concepts and Notations

In e-commerce recommendation, a knowledge graph (or product
graph) denoted byGp is constructed to capture richmeta-information
of products on the platform. It is defined to be a set of triples,
Gp = {(e, r , e ′) | e, e ′ ∈ Ep, r ∈ Rp}, where Ep and Rp respec-
tively denote the sets of entities and relations. A special subset
of entities are called products (items), denoted by I ⊆ Ep. Each
triple (e, r , e ′) ∈ Gp represents a fact indicating that head entity e
interacts with tail entity e ′ through relation r .

At the same time, diverse user activities can also be modeled as
a heterogeneous graph denoted by Gu = {(e, r , e ′) | e, e ′ ∈ Eu, r ∈
Ru}, where Eu and Ru are entity and relation sets satisfying that
user set U ⊆ Eu, item set I ⊆ Eu, and user–item interaction
rui ∈ Ru. When |Ru | = 1 and Eu = U ∪ I, Gu is a bipartite user–
item graph. Here, we assume Gu is the general user interaction
graph consisting of diverse interactions and objects, e.g., a user can
make comments as in Fig. 1.

For convenience, we unify both product graph and user interac-
tion graph into the same framework, which we call User-centric KG,
denoted as G = Gp ∪ Gu with combined entity set E = Ep ∪ Eu
and relation set R = Rp ∪ Ru. In the remainder of this paper, the
term KG generally refers to this User-centric KG.

A path in the KG is defined as a sequence of entities and relations,
denoted byL = {e0, r1, e2, . . . , r |L |, e |L |} (or simplyLe0{e |L | ), where
e0, . . . , e |L | ∈ E, r1, . . . , r |L | ∈ R and (et−1, rt , et ) ∈ G for t =
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1, . . . , |L|. To guarantee the existence of paths, inverse edges are
added into the KG, i.e., if (e, r , e ′) ∈ G, then (e ′, r−1, e) ∈ G, where
r−1 denotes the inverse relation with respect to r ∈ R. One kind
of path of particular interest is called a user-centric path. Such a
path originates at a user entity (e0 ∈ U) and ends with an item
entity (e |L | ∈ I). We also define a user-centric pattern π to be a
relational path between a user and an item, π = {r1, . . . , r |π |}.
Hence, the relation sequence of any user-centric path forms a user-
centric pattern. Such a pattern can be viewed as a semantic rule
that describes a specific user behavior towards a product via some
actions (relations) on the e-commerce platform. Additionally, we
define the user profile Tu of user u to be an aggregation of user-
centric patterns with weights, Tu = {(π1,w1), . . . , (π |Tu |,w |Tu |)},
where w1, . . . ,w |Tu | ∈ N are the weights of patterns. Each user
profile distinctively characterizes prominent user behavior from
the purchase history as well as diverse other activities, and can be
leveraged to guide KG reasoning for recommendation (Section 3.2).

2.2 Problem Formulation

In this work, we study the problem of KG reasoning for explainable
recommendation in an e-commerce scenario [46]. By leveraging
rich information in the KG, we aim to predict a set of items as
recommendations for each user along with the corresponding user-
centric paths as the explanation. The problem is formulated as
follows.

Definition 1. (Problem Definition) Given an incomplete user-

centric KG G and an integer K , for each user u ∈ U, the goal is to

generate 1) a set of K items

{
i(k )

��i(k ) ∈ I, (u, rui , i(k )) < G,k ∈ [K]},
and 2) K corresponding user-centric paths

{
Lu{i (k )

}
k ∈[K ].

2.3 A Coarse-to-Fine Paradigm

The general framework to approach the problem in Def. 1 consists of
two parts: a recommendation component frec and a path inference
component fpath. In most existing approaches [1, 32, 41, 44, 46],
frec : u, i 7→ R estimates a similarity score between user u and an
item i using enriched information from the KG. fpath : u, i 7→ L
outputs a user-centric path L given useru and item i (sometimes i is
not necessary as input [46]). Themajor differences between existing
works lie in 1) the technical implementation and 2) the composition
and execution order of these components. Below we revisit the
existing KG reasoning paradigms and highlight the benefits of the
proposed coarse-to-fine paradigm.

Rec-First Paradigm. One group of approaches [1, 41, 44] first
makes recommendations via frec, followed by a separate process
fpath to search paths that best match the predicted user–item pair:

î = argmax
i ∈I

frec(u, i;G), L̂u{î = fpath(u, î;G),

where î, L̂u{î are the predicted item and path, respectively. Com-
mon choices of frec include KG embeddings [3, 41] and relational
graph neural networks [38, 44]. fpath usually refers to a path rank-
ing model [13, 46] or graph search algorithm [1, 9]. However, it
is worth noting that one critical limitation of this paradigm is the
isolation of recommendation frec and path selection fpath. This may
degrade recommendation performance, as it is solely determined

by frec, but fails to benefit from the post-hoc path-finding of fpath.
More importantly, the reported path is not a genuine explanation
of the actual recommendation process.

Path-Guided Paradigm. Another line of work [46] first uses fpath
to perform path-finding with unknown destination and the reached
item is naturally adopted as the recommendation:

L̂u{eT = fpath(u,−;Gu), î = eT ,

where “−” means no item is required as input and eT is the last
entity of path L̂u{eT . Here, fpath usually adopts a multi-step rea-
soning model such as a policy network [29, 40, 46] to sequentially
pick the next step in the KG. Since the recommendation is derived
along with the path inference results, fpath implicitly contains the
recommendation process, and the resulting path can be used to
track and explain the decision-making process. However, due to the
challenges of unknown destinations and the huge search space of
KG, the signals (e.g., rewards) are very sparse and cannot effectively
guide the path inference to achieve satisfactory recommendation,
in comparison with Rec-First approaches.

Coarse-to-Fine Paradigm. To achieve direct path reasoning while
simultaneously obtaining competitive recommendation performance,
we propose a novel coarse-to-fine paradigm. In the coarse stage,
we introduce a new component fprofile : u 7→ Tu that composes a
user profile Tu to capture prominent user behavior from historic
data (details in Section 3.1). Then, for fine-grained modeling, an
improved variant of path inference component f ′path : u,Tu 7→ L

is developed to perform multi-step path reasoning guided by the
composed user profile (details in Section 3.2):

Tu = fprofile(u;Gu), L̂u{eT = f ′path(u,Tu ;Gu), î = eT . (1)

The path reasoning relies on a one-step reasoner ϕ with learn-
able parameter Θ (see Section 3.1.2). It determines the t th step
action by estimating the probability PΘ(rt , et |u,ht ) of choosing
an outgoing edge (rt , et ) given user u and history trajectory ht =
{r1, e1, . . . , rt−1, et−1}. Therefore, we can estimate the probability
of a multi-step path L = {u, r1, e1, . . . , rT , eT } being generated by
ϕ:

log PΘ(L|u) =
T∑
t=1

log PΘ(rt , et |u,ht ) (2)

This paradigm has three notable benefits.
• Explicit user modeling from fprofile can detect prominent user-
centric patterns, which assist the path reasoning process in ar-
riving at potential items of interest to the user.
• Path inference via f ′path is conducted under the guidance of the
user profile so as to improve both the effectiveness and efficiency
of the path-finding process.
• The reasoner ϕ is decomposed into an inventory of neural rea-
soning modules, which can be composed on the fly based on the
user profile to execute f ′path.

3 METHODOLOGY

Under the coarse-to-fine paradigm, we present a corresponding
method called Cafe to approach the problem of KG reasoning for
recommendation. As illustrated in Fig. 2, given a KG (a), a user
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Figure 2: Illustration of Cafe, a coarse-to-fine KG reasoning approach. (a) Given a KG and a start user, the goal is to conduct

multi-step path reasoning to derive recommendations. (b) In the coarse stage, a personalized user profile is constructed based

on historic user behavior in the KG. (c) To make use of the user profile in path reasoning, an inventory of neural symbolic

reasoning modules is maintained. (d) In the fine stage, a layout tree is composed with the modules based on the user profile,

which is exploited by the proposed PPR algorithm (Alg. 1) to produce (e) a batch of paths along with recommendations.

profile is first composed to capture prominent user-centric patterns
in the coarse stage (b). To conduct multi-hop path reasoning guided
by the user profile, we decompose the reasoner ϕ into an inventory
of neural reasoning modules (c). In the fine stage, the selective
neural symbolic reasoning modules are composed based on the user
profile (d), which are exploited by a Profile-guided Path Reasoning
(PPR) algorithm to efficiently perform batch path reasoning for
recommendation (e).

3.1 Coarse-Stage: User Profile Composition

Given a user u, the goal of fprofile is to find a set of user-centric
patterns that can distinctively characterize user behaviors, so that
the potential paths with these patterns are more likely to arrive at
items of interest to the given user. Since e-commerce KGs usually
contain a large number of relations, we first adopt an off-the-shelf
random walk based algorithm [24] to produce a candidate set of
M user-centric patterns, Π = {π1, π2, . . . , πM }, with maximum
length H , from interacted user–item pairs in G. To compose the
user profile, one naive way is to assign the weights in proportion
to the frequency of these retrieved patterns. However, this only
provides overall information of user behavior towards items and is
empirically shown not to achieve satisfying performance compared
to personalized user profile (details in Section 4.3).

3.1.1 Personalized Pattern Selection. The task of user profile com-
position now turns to selecting a subset from Π and assigning
weights that reflect the prominent behaviors for each user. For-
mally, letVΘ(u, π ) be the prominence of a user-centric pattern π for
user u. Intuitively, if π is prominent with a larger value ofVΘ(u, π ),
it is more likely that the reasoning model ϕ can derive a path with
pattern π from u to potential items of interest. Hence, we define
VΘ(u, π ) to be the likelihood of “correct” paths being generated by

ϕ:
VΘ(u, π ) = EL∼Dπ [log PΘ(L | u)], (3)

where Dπ denotes the set of paths with pattern π between the user
u and interacted items in Gu, and log PΘ(L|u) is defined in Eq. 2.
Here, we assume the reasoner ϕ has been trained and the parameter
Θ is fixed. The representation and model learning details will be
discussed in Section 3.1.2.

With the help of VΘ(u, π ), we propose a heuristic method to
select prominent patterns to compose the profile for each user.
Specifically, the goal is to determine the weights {w1, . . . ,wM } of
candidate patterns in Π and only the patterns with positive weights
are kept. This can be formalized as an optimization problem:

max
w1, ...,wM

∑
j
w j VΘ(u, πj )

s.t.
∑
j
w j = K, 0 ≤ w j ≤ Kj , j ∈ [M],

(4)

where Kj is the upper bound of the quantity of pattern πj to be
adopted. The optimization problem corresponds to the well-studied
bounded knapsack problem with equal weights 1 and can be easily
solved [9]. Consequently, the user profile can be derived from Eq. 4
by Tu = {(πj ,w j ) | πj ∈ Π,w j > 0, j ∈ [M]} (see example in
Fig. 2(b)). Each positive w j specifies the number of paths with
pattern πj to be generated by fpath (Section 3.2).

3.1.2 Modularized Reasoning Model. As introduced in Section 2.3,
the reasoner ϕ parametrized byΘ determines the next-step decision
in path-finding. It maps the given user u and historic trajectory ht
to the conditional probability of choosing outgoing edge (rt , et ),
i.e., ϕ : u,ht 7→ PΘ(rt , et |u,ht ). Inspired by previous work [46], we
can treat ϕ as a stochastic policy network [40]. However, instead of
solving a reinforcement learning problem that requires a careful
handcrafted design of good reward functions, we train the model
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ϕ via behavior cloning [40] by reusing the sampled paths that are
previously retrieved to produce candidate patterns Π.

Nevertheless, learning ϕ is still challenging due to the huge
search space in the KG, where the out-degrees of nodes can be very
large and the number of connecting edges varies from node to node.
To address this, instead of representing ϕ as a deep and complex
neural network to increase the reasoning capability, we propose to
maintain an inventory of shallow neural symbolic reasoning modules

ϕr with parameter Θr for each relation r in Π, as shown in Fig. 2(c).
Each ϕr (u, h;Θr ) : Rd ×Rd 7→ Rd takes as input a user embedding
u and a history embedding h and outputs the estimated vector of
the next-hop entity. The network structure of each ϕr is defined as:

ϕr (u,h;Θr ) = σ (σ ([u; h]Wr ,1)Wr ,2)Wr ,3, (5)

where [; ] denotes concatenation, σ (·) is a nonlinear activation func-
tion (e.g., ReLU [34]), andΘr = {Wr ,1,Wr ,2,Wr ,3} are the learnable
parameters for the module ϕr .

With the module ϕrt , we can compute the probability

PΘ(rt , et | u,ht ) ≈
1
Z
exp(⟨ϕrt (u, ht ;Θrt ), et ⟩), (6)

where Z =
∑
e ′t exp(⟨ϕrt (u, ht ;Θrt ), e

′
t ⟩) is the normalization term

over all possible next-hop entities, and ⟨·, ·⟩ is the dot product.
The benefits of this design are threefold. First, the total number

of parameters of maintaining such small modules is smaller than
that of a deep and complex neural network. Second, the space of
next-hop actions is reduced from (rt , et ) (all outgoing edges) to et
(only the edges of given relation), since the relation can be deter-
mined by the user profile. Third, outputting a continuous vector can
effectively solve the issue of varying numbers of outgoing edges.

Objectives. We consider the set of all parameters Θ = {e|∀e ∈
E}∪{Θr |∀r ∈ Π}, where e denotes the entity embedding and is ini-
tialized with a pretrained KG embedding [3]. Given a positive path
L = {u, r1, e1, . . . , eT−1, rT , i

+} with (u, rui , i+) ∈ G, the behavior
cloning aims to minimize the following loss over Θ:

ℓpath(Θ;L) = − log PΘ(L|u) = −
T∑
t=1

log PΘ(rt , et |u,ht ). (7)

However, the objective in Eq. 7 only forces the reasoningmodules
to fit the given path, but cannot identify which path may finally lead
to potential items of interest. Therefore, we impose an additional
pairwise ranking loss ℓrank(Θ;L) to jointly train the parameters Θ:

ℓrank(Θ;L) = −Ei−∼D−u
[
σ
(〈
i+, êT

〉
− ⟨i−, êT ⟩

) ]
, (8)

where D−u denotes the set of negative items of user u, i.e., D−u =
{i |i ∈ I, (u, rui , i) < G}, êT = ϕrT (u, hT ;ΘrT ), and σ (·) is the
sigmoid function.

By aggregating Eqs. 7 and 8 over all users in KG Gu, the overall
goal is to minimize the following objective:

ℓall (Θ) =
∑
u

∑
L∼Lu

ℓpath(Θ;L) + λℓrank(Θ;L), (9)

where Lu = {Lu{i+ | (u, rui , i
+) ∈ Gu, pattern(Lu{i+) ∈ Π}, and

λ is the weighting factor to balance between the two losses.

Algorithm 1 Profile-guided Path Reasoning (PPR) Algorithm
1: Input: user u, user profile Tu .
2: Output: K user-centric paths.
3: procedure Main()
4: Construct layout tree Tu based on user profile Tu .
5: x ← ROOT(Tu ), x̂← u, Lx ← {{u}}.
6: Initialize queue Q ← CHILDREN(x).
7: while Q , ∅ do
8: x ← Q .pop(), p ← PARENT(x).
9: x̂← ϕrx (u, p̂;Θrx ).
10: Initialize Lx ← {}.
11: for L ∈ Lp do

12: Ex ← {e ′ | ∀(e |L |, rx , e
′) ∈ G, τ (e ′) =

τt (rx ), rank(⟨x̂, e′⟩) ≤ nx }.
13: Lx ← Lx ∪ (L ∪ {e

′}), for e ′ ∈ Ex .
14: Update Q ← Q ∪ CHILDREN(x).
15: return

⋃
x ∈LEAVES(Tu ) Lx .

3.2 Fine-Stage: Path Reasoning for

Recommendation

Given the composed user profile Tu = {(π1,w1), . . . , (πM ,wM )} of
user u, the goal of fpath is to output K reasoning paths along with
items such that the number of paths with pattern πj is proportional
tow j . Considering that finding each path individually is inefficient
due to repeated node visitation and calculation [46], we propose
a Profile-guided Path-Reasoning algorithm (PPR) that is capable
of finding a batch of paths simultaneously via selective neural
symbolic reasoning modules according to the composed user profile.
As illustrated in Fig. 2(d), it first constructs a layout tree Tu from
the user profile Tu to specify the execution order of neural symbolic
reasoning modules. Then, the reasoning modules are executed level
by level to produce the next-hop embeddings that are employed to
find the closest entities in the KG (Fig. 2(e)).

The details of the algorithm are given in Alg. 1. Specifically, the
layout tree Tu (line 4) is first constructed by merging patterns in
Tu , so that each node x ∈ Tu is associated with a relation rx (a
dummy relation is used for the root node), and each root-to-leaf
tree path corresponds to a pattern in Tu . Next, an integer nx is
assigned to each node x , which specifies the number of entities
to be generated at the current position. If node x is the root, one
sets nx = 1. If x is a leaf, nx is initialized withw j , i.e., the weight
of pattern πj that ends with relation rx . Otherwise, nx is updated
by nx = minc ∈children(x )(nc ), and subsequently, the value at each
child c of node x will be refreshed as n′c = ⌊nc/nx ⌋.

In fact,Tu specifies the layout of a tree-structured neural network
composed of reasoning modules ϕrx at each node x with relation rx .
The execution process of the network is described in Alg. 1 (lines
5-15) to derive K reasoning paths simultaneously. It starts at the
root node of Tu and follows level-order traversal to generate paths.
At each node x ∈ Tu , ϕrx takes as input the user embedding u and
the embedding from its parent node and outputs an embedding
vector denoted by x̂. Meanwhile, a set of new paths Lx up to node
x is generated based on x̂ as well as the paths from its parent node
Lp . Specifically, for each path L ∈ Lp , we find at most nx new
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CDs & Vinyl Clothing Cell Phones Beauty

#Users 75,258 39,387 27,879 22,363
#Items 64,443 23,033 10,429 12,101
#Interactions 1.10M 278.86K 194.32K 198.58K
#Entities 581,105 425,534 163,255 224,080
#Relations 16 16 16 16
#Triples 387.43M 36.37M 37.01M 37.73M

Table 1: Statistics of four real-world Amazon KG datasets:

CDs & Vinyl, Clothing, Cell Phones, and Beauty.

entities such that each of them is connected to the last entity in L
in the KG, and its embedding is most similar to x̂. Eventually, we
obtain the final results by aggregating all the paths at the leaf nodes
and rank them based on the dot-product score in Eq. 6.

3.3 Model Analysis

For each user, the time complexity of PPR in Alg. 1 is O(MH (Q +
KdD)), where Q is the running time for executing each neural
symbolic reasoning module, d is the dimensionality of entity em-
beddings, D is the maximum node degree in the KG. Intuitively,
there are at most O(MH ) nodes in Tu , and for each node, it costs
O(MHQ) time for the inference (forward pass) of the neural rea-
soning module, and O(KdD) time to find nearest entities in Alg. 1.
Unlike existing methods [1, 46] that find each individual path sepa-
rately, our PPR algorithm can derive all K paths simultaneously in
the tree level order. If some resulting paths share the same entities,
their corresponding embeddings will be computed only once and
hence redundant computations are avoided. The efficiency of the
algorithm is also empirically evaluated in Section 4.4.

4 EXPERIMENTS

In this section, we extensively evaluate our proposed approach,
providing a series of quantitative as well as qualitative analyses on
several real-world datasets.

4.1 Experimental Setup

4.1.1 Dataset. Weexperiment on four domain-specific e-commerce
datasets from Amazon [18], namely CDs and Vinyl, Clothing, Cell
Phones, and Beauty. They provide both rich meta-information of
products and diverse user behavior records such as purchase history,
ratings, product reviews, and preferred styles. Each dataset is con-
sidered as an individual benchmark that constitutes a user-centric
KG with various types of relations (including inverse relations),
which implies that results are not necessarily comparable across
different domains. Table 1 summarizes the statistical information of
the four datasets. We adopt the same training (70%) and test splits
(30%) as previous work [1, 46], which are publicly available1.

4.1.2 Baselines andMetrics. We consider three categories of recom-
mendation approaches as baselines in the following experiments.
• MF-based models: BPR [36] is a Bayesian personalized method
that optimizes a pairwise ranking between different user–item
pairs for top-N recommendation. BPR-HFT [33] is a review-
based recommendation method based on Hidden Factors and Top-
ics (HFT) to learn latent representations of users and items with

1https://github.com/orcax/PGPR

the topic distributions incorporated. DeepCoNN [54] makes rec-
ommendations through a Deep Cooperative Neural Network
based on reviews, which is capable of encoding both users and
products for rating prediction.
• KG embedding models: CKE [48], or Collaborative Knowledge
base Embedding, is a neural recommendation method based on
jointly integrating matrix factorization and heterogeneous graph
data to infer recommendations. RippleNet [41] incorporates a
KG into recommendation by propagating user preferences on
entities. KGAT [44] is the the state-of-the-art KG-based model
using graph-based attention techniques.
• Path reasoning models:HeteroEmbed [1] is the state-of-the-art
Rec-First approach based on TransE [3] embeddings for recom-
mendations, followed by a post-hoc graph search to find paths.
PGPR [46] is the state-of-the-art path-guided model, which con-
ducts path reasoning using reinforcement learning.

For all models, we adopted the same metrics as previous work [46]
to evaluate the top-10 recommendations of each user in the test
set, including Normalized Discounted Cumulative Gain (NDCG),
Recall, Hit Rate (HR), and Precision (Prec.).

4.1.3 Implementation Details. In our model, the entity embedding
dimensionality is 100. In each neural relation module ϕr with
respect to some relation r , the parameters areWr ,1 ∈ R200×256,
Wr ,2 ∈ R256×256, andWr ,3 ∈ R256×100. We use Xavier initialization
for the parameters and train them with Adam optimization [22]
with a learning rate of 10−4, batch size of 128, and a number of
training epochs of 20. The history ht is set to et−1. The weighting
factor λ for the ranking loss is set to 10. The number of output paths
K is 15. For fair comparison with previous work [1, 46], we also re-
strict the maximum path length H to 3, which leads to 15 candidate
user-centric patterns in Π. The influence of these hyperparameters
will be studied in Section 4.6.

4.2 Overall Performance

We first show the top-10 recommendation performance of our pro-
posed method Cafe compared to all baselines. We evaluate each
setting 5 times and report the average scores in Table 2.

Overall, we observe that our method outperforms three kinds of
state-of-the-art methods (KGAT, HeteroEmbed, PGPR) by a large
margin across all settings. For example, on the Clothing dataset,
our model achieves 6.340% in Recall, which is higher than 5.172%
by KGAT, 5.466% by HeteroEmbed, and 4.834% of PGPR. Similar
trends can also be observed on other benchmarks. Additionally,
our model shows better ranking performance than the baselines
in terms of NDCG. This is mainly attributed to the ranking loss in
Eq. 8, which encourages the model to identify the path based on
whether it can lead to good items. The influence of the ranking loss
will be studied in Section 4.6.1.

Note that KG embedding based approaches such as RippleNet
and KGAT are less competitive on these datasets. One possible rea-
son is that unlike KGs such as Freebase, where the reasoning rules
are objective and explicit (e.g., HasNationality = BornIn ∧ CityIn),
the patterns of user behavior towards items are more diverse and
uncertain in e-commence settings (e.g., many factors can contribute
to a user purchase behavior), making it harder to mine useful in-
formation. Our coarse-to-fine method can first learn a sketch of
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CDs & Vinyl Clothing Cell Phones Beauty

Measures (%) NDCG Recall HR Prec. NDCG Recall HR Prec. NDCG Recall HR Prec. NDCG Recall HR Prec.

BPR 2.009 2.679 8.554 1.085 0.601 1.046 1.767 0.185 1.998 3.258 5.273 0.595 2.753 4.241 8.241 1.143
BPR-HFT 2.661 3.570 9.926 1.268 1.067 1.819 2.872 0.297 3.151 5.307 8.125 0.860 2.934 4.459 8.268 1.132
DeepCoNN 4.218 6.001 13.857 1.681 1.310 2.332 3.286 0.229 3.636 6.353 9.913 0.999 3.359 5.429 9.807 1.200
CKE 4.620 6.483 14.541 1.779 1.502 2.509 4.275 0.388 3.995 7.005 10.809 1.070 3.717 5.938 11.043 1.371
RippleNet 4.871 7.145 15.727 1.852 2.195 3.892 6.032 0.603 4.837 7.716 11.454 1.101 5.162 8.127 14.681 1.699
KGAT 5.411 7.764 17.173 2.120 3.021 5.172 7.394 0.747 5.111 8.978 12.589 1.296 6.108 10.022 16.740 1.893
HeteroEmbed 5.563 7.949 17.556 2.192 3.091 5.466 7.972 0.763 5.370 9.498 13.455 1.325 6.399 10.411 17.498 1.986
PGPR 5.590 7.569 16.886 2.157 2.858 4.834 7.020 0.728 5.042 8.416 11.904 1.274 5.449 8.324 14.401 1.707
Cafe (Ours) 6.868 9.376 19.692 2.562 3.689 6.340 9.275 0.975 6.313 11.086 15.531 1.692 7.061 10.948 18.099 2.270

Improvement (%) +22.86 +17.95 +12.17 +16.88 +19.34 +15.99 +16.34 +24.52 +17.56 +16.72 +15.43 +24.60 +10.34 +5.16 +3.43 +14.07

Table 2: Overall recommendation performance of ourmethod compared to other approaches on four benchmarks. The results

are computed based on top-10 recommendations in the test set and are given as percentages (%). The best results are highlighted

in bold font and the best baseline results are underlined.

user behavior (i.e., user profile), which filters out noisy information
that may be irrelevant to conduct path reasoning. That is why our
model is able to achieve better recommendation performance. The
effectiveness of user profiles is studied in the next section.

4.3 Effectiveness of User Profile (Coarse-Stage)

CDs & Vinyl Clothing

NDCG Recall HR Prec. NDCG Recall HR Prec.

PGPR 5.590 7.569 16.886 2.157 2.858 4.834 7.020 0.728
Rand 5.308 7.217 16.158 2.003 2.654 4.727 6.875 0.680
Prior 5.924 8.259 17.825 2.327 3.157 5.031 7.376 0.773
Ours 6.868 9.376 19.692 2.562 3.689 6.340 9.275 0.975

Cell Phones Beauty

NDCG Recall HR Prec. NDCG Recall HR Prec.

PGPR 5.042 8.416 11.904 1.274 5.449 8.324 14.401 1.707
Rand 4.545 7.229 10.192 1.087 5.293 8.256 14.564 1.718
Prior 5.255 9.842 13.097 1.359 6.180 9.393 16.258 2.024
Ours 6.313 11.086 15.531 1.692 7.061 10.948 18.099 2.270

Table 3: Results of recommendation performance using dif-

ferent user profile variants.

In this experiment, we evaluate the effectiveness of the approach
to compose user profiles as described in Section 3.1. Specifically,
we consider the following ways to compose different Tu for user u
while keeping the same path reasoning algorithm in Section 3.2.
• Rand stands for randomly sampling a subset of patterns from Π
to compose Tu . This straightforward method can represent the
path reasoning methods without considering user profiles.
• Prior samples the patterns from Π proportional to their frequen-
cies and discards low frequency patterns. This is equivalent to
assigning each user the same profile based on global information.
• Cafe is the approach we propose, which estimates the weights
by solving the optimization problem in Eq. 4.

Additionally, we also compare to the SOTA path reasoning approach
PGPR that also fails to model user profiles.

The results on all datasets are reported in Table 3. We observe
that our model Cafe with composed user profile exhibits better
recommendation performance than other baselines. This shows
that the path reasoning guided by the user profile can find user-
centric paths of higher quality, which are more likely to arrive at
an item node of interest to the user. In addition, we also note that
the profile-driven methods Cafe and Prior outperform the ones

without profiles (PGPR, Rand). This suggests that user profiles can
benefit the path reasoning process.

4.4 Efficiency of Path Reasoning (Fine-Stage)

CDs & Vinyl Clothing

Time (s) Rec. (1k users) Find (10k paths) Rec. (1k users) Find (10k paths)

PGPR 287.158 ± 5.213 26.725 ± 0.572 236.118 ± 4.840 21.889 ± 0.437
Hetero. 53.984 ± 1.201 21.674 ± 0.498 55.482 ± 1.703 18.492 ± 0.399
Indiv. 71.769 ± 1.366 25.229 ± 0.482 61.519 ± 1.966 20.128 ± 0.377
Ours 27.184 ± 1.026 17.851 ± 0.364 22.850 ± 1.378 15.233 ± 0.309

Cell Phones Beauty

Time (s) Rec. (1k users) Find (10k paths) Rec. (1k users) Find (10k paths)

PGPR 279.780 ± 5.135 25.382 ± 0.563 292.447 ± 6.139 26.396 ± 0.591
Hetero. 48.125 ± 1.148 20.037 ± 0.496 51.392 ± 1.369 21.492 ± 0.467
Indiv. 62.259 ± 1.171 23.735 ± 0.502 68.158 ± 1.209 24.938 ± 0.473
Ours 23.387 ± 1.124 15.591 ± 0.406 25.220 ± 1.141 16.813 ± 0.458

Table 4: Time costs of recommendations per 1k users and

path finding per 10k paths.

We further study the efficiency of our path reasoning algorithm
in Section 3.2 compared to other path-finding baselines. Specifically,
we consider the SOTA Path-Guided method PGPR and the SOTA
Rec-First method HeteroEmbed. We also include a variant of our
algorithm in Alg. 1 named Indiv., which simply finds each individual
path one by one. These algorithms are evaluated on the empirical
running time of 1) making recommendations (including both items
and paths) for 1k users and 2) the path-finding process (only paths)
for generating 10k paths. All experiments are conducted on the
same hardware with Intel i7-6850K CPU, 32G memory and one
Nvidia 1080Ti GPU. The results are reported in Table 4.

We observe that our method costs the least time for both tasks
among all tested algorithms. In particular, our method is about 10×
faster than PGPR in making recommendations on all benchmarks,
both of which aim to find paths with unknown destination. One
reason is that PGPR is required to find a lot of candidate paths,
which are then ranked to obtain top 10 paths for recommendation.
On the contrary, our method seeks out useful paths based on the
user profile, and hence it saves much more time in path-reasoning
based recommendation. In addition, for both tasks, our method
costs less time than Indiv., which means that the batch path finding
algorithm in Alg. 1 is more efficient than finding paths individually.
Our algorithm thus avoids redundant computation of embeddings
and nearest nodes searches.
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4.5 Robustness to Unseen Patterns

CDs & Vinyl Clothing

#Patterns NDCG Recall HR Prec. NDCG Recall HR Prec.

100% 6.868 9.376 19.692 2.562 3.689 6.340 9.275 0.975
70% 6.713 9.152 19.270 2.488 3.586 6.175 9.020 0.946
Decrease 2.31% 2.45% 2.19% 2.98% 2.87% 2.68% 2.83% 3.05%

Cell Phones Beauty

#Patterns NDCG Recall HR Prec. NDCG Recall HR Prec.

100% 6.313 11.086 15.531 1.692 7.061 10.948 18.099 2.270
70% 6.143 10.764 15.098 1.639 6.974 10.803 17.835 2.225
Decrease 2.77% 2.99% 2.87% 3.23% 1.25% 1.34% 1.48% 2.02%

Table 5: Experimental results for unseen patterns

Recall that the candidate set Π cannot exhaustively cover all
possible user-centric patterns in a very large KG, since only high
frequency patterns will be collected by the algorithm [24]. There-
fore, in this experiment, we investigate if unseen patterns that do
not exist in Π will influence the performance. To conduct the exper-
iment, in the coarse stage of user profile composition, we randomly
preserve 70% of the candidate patterns in Π for each user to com-
pose the user profile. The remaining 30% of patterns are unseen to
the model for each user. All other settings remain the default ones.

The results on the four datasets are reported in Table 5. It is
interesting to see that the decrease in performance is at around
1.5–3%, which is marginal compared to the regular setting. This
shows that our model is robust to unseen patterns for user profile
composition and can still provide high-quality recommendations.

4.6 Ablation Study

We study how different settings of hyperparameters influence the
recommendation quality of our model. We consider the ranking
weight and the number of sampling paths on the Cell Phones dataset
only due to space constraints.

4.6.1 Influence of ranking loss. We first show the influence of the
ranking loss in Eq. 9 under different values of the weighting factor
λ ∈ {0, 5, 10, 15, 20}, where λ = 0 means no ranking loss is imposed
for training. The results are plotted in Fig. 3, including our model
(red curves) and the best baseline HeteroEmbed (blue curves).

We observe two interesting trends. First, our model consistently
outperforms HeteroEmbed under all settings of λ in terms of NDCG,
Recall, and Precision. Even without the ranking loss, our model
can still guarantee a high quality of recommendation. On the other
hand, a proper choice of λ (e.g., λ = 10) not only benefits the
direct ranking effect (NDCG), but also boosts the model’s ability
to find more relevant items (recall, hit rate, and precision). Second,
a larger weight of the ranking loss may not always entail a better
performance, since there is a trade-off between the ranking (Eq. 8)
and path regularization (Eq. 7). This is reasonable because if the
ranking loss plays a dominant role, which implies that the model
pays less attention to fitting paths, as a consequence, it may fail to
find the correct paths that reach promising items.

4.6.2 Influence of sampling sizes of output paths. Furthermore, we
study how the performance varies with different sampling sizes of
output reasoning paths K ∈ {15, 20, 25, 30} (see Section 3.2).
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Figure 3: Results of varying ranking weights on Clothing

(blue) and Cell Phones (red) datasets. (HE: [1])

15 20 25 30
Sample sizes

3.68

3.70

3.72

R
ec

om
m

en
da

ti
on

N
D

C
G

Ours

15 20 25 30
Sample sizes

0.97

0.98

0.99

R
ec

om
m

en
da

ti
on

P
re

ci
si

on

Ours

15 20 25 30
Sample sizes

6.28

6.30

6.32

6.34

R
ec

om
m

en
da

ti
on

N
D

C
G

Ours

15 20 25 30
Sample sizes

1.68

1.69

1.70

1.71

R
ec

om
m

en
da

ti
on

P
re

ci
si

on

Ours

(a) NDCG (b) Precision (c) NDCG (d) Precision

Figure 4: Results of different number of output reasoning

paths on Clothing (blue) and Cell Phones (red) datasets.

In Fig. 4, we illustrate with box plots the recommendation perfor-
mance of all users in terms of various metrics. We observe similar
trends across all metrics in that there exists an optimal choice of
K under each setting, e.g., K = 20 for NDCG on the Cell Phones
dataset. The variances are within acceptable ranges, which means
that the path reasoning procedure of our model leads to satisfy-
ing results for most of the users. One possible reason is that some
items suitable for recommendation are in fact ranked relatively low.
Smaller sampling sizes lead to smaller search spaces that preclude
the discovery of such low-ranked items.

4.7 Case Study

We showcase two recommendation examples with path-based ex-
planations produced by our model Cafe. As shown in Fig. 5, each
case consists of a layout tree merged from the user profile along
with a subset of generated reasoning paths. In Case 1, the pattern
containing the “mention” relation takes the dominant role (w = 10).
For example, the user mentions the keywords “absorb”, “vitamin”.
The recommended items “lotion” and “facial cream” match “ab-
sorb”, and “vitamin serum” is also consistent with “vitamin”. Case
2 shows a user profile with more diverse patterns. For example, the
user purchased a “necklace” by “Hello Kitty”. It is reasonable for
our method to recommend “watch” from the same “Hello Kitty”
brand. Similar inferences can also be drawn for “business bag”.
Moreover, the interaction with another user and the “rain” feature
leads to “umbrella” being recommended. In these cases, our method
is capable of producing relevant recommendations along with the
explainable paths via explicit KG reasoning.

5 RELATEDWORK

There are two main research lines related to our work: KG-based
explainable recommendation and multi-behavior recommendation.

KG-based Explainable Recommendation Explainable recom-
mendation [6–8, 26, 45, 49, 50] refers to a decision-making system
that not only provides accurate recommendation results, but also
generates explanations to clarify why the items are recommended.
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Figure 5: Two real cases discovered by our model, each containing a layout tree merged from user profile and a subset of

reasoning paths. The end nodes in the resulting paths are the predicted items for recommendation.

One line of research focuses on the KG embedding approach.
Several works integrate KG representation learning into the recom-
mendation model [17, 20, 21, 42, 47]. Typically, they assume that
the recommended items and their attributes can be mapped into a
latent vector space along with transnational relations between the
them. For example, Zhang et al. [47] propose the CKE model, which
incorporates diverse item types information into Collaborative Fil-
tering. Huang et al. [21] integrate a KG in multimodal formats
capturing dynamic user preferences by modeling the sequential
interactions over the KG. Wang et al. [42] consider both seman-
tics and knowledge representations of news contents for improved
news recommendation. Huang et al. [20] leverage KG to enhance
item representations and He et al. [17] jointly conduct KG comple-
tion and item recommendations. These methods demonstrate the
effectiveness of incorporating KG embedding into recommendation.
However, they fail to directly leverage the KG structure to generate
reasoning paths as explanations for the recommendation [49].

Another line of work explores incorporating KG reasoning into
the process of recommendation. The graph structure empowers the
system to exploit informative features and also to deliver intuitive
path-based explanations. Early works [5] propose to model logic
rules to conduct explicit reasoning over a KG for explainability.
However, the rules are handcrafted and can hardly generalize to
unexplored entity correlations. In contrast, recent approaches adopt
deep neural networks to learn a direct mapping among users, items,
and other relations in a KG to enable reasoning for explainable
recommendation. Some approaches [32, 41, 44] only use item-side
knowledge but neglect the diverse historical activities of users,
while others [1, 4] isolate path generation and recommendations,
so the resulting pathmay be irrelevant to the actual decisionmaking
process. We argue that both of these two types of methods fail to
model user behaviors to conduct an explicit path reasoning process,
which makes the recommendation process less intuitive. Recently,
Xian et al. [46] and Zhao et al. [51] perform explicit KG reasoning for
explainable recommendation via reinforcement learning. Although
their paths are generated together with the recommended items, the
recommendation performance is limited by the large search space

of the KG and the weak guidance of sparse rewards. In this work, we
follow the setting of KG reasoning for explainable recommendation
[46], but aim to provide better guidance from user history behavior,
as confirmed in our experiments.

Multi-Behavior Recommendation On modern e-commerce
platforms, users can interact with the system in multiple forms
[23, 28, 30, 39]. Lo et al. [30] provide several case studies cover-
ing the influence of clicking and saving behavior analysis on the
final purchase decision. Existing methods for multi-behavior recom-
mendations may be divided into two categories: collective matrix
factorization based approaches and approaches based on learning
from implicit interactions. Singh and Gordon [39] propose factoriz-
ing multiple user–item interaction matrices as a collective matrix
factorization model with shared item-side embeddings across matri-
ces. Zhao et al. [53] learn different embedding vectors for different
behavior types in an online social network. Krohn-Grimberghe et al.
[23] share the user embeddings in recommendation based social
network data based on the CMF method. In contrast, Loni et al. [31]
proposed an extension of Bayesian Personalized Ranking [36] as
multi-channel BPR, to adapt the sampling rule from different types
of behavior in the training of standard BPR. Guo et al. [16] proposed
sampling unobserved items as positive items based on item–item
similarity, which is calculated using multiple types of feedback.
However, none of these methods consider the reasoning framework
to provide explainable recommendations, let alone explicitly model
diverse user behaviors over KGs on e-commerce platforms.

6 CONCLUSION

In this paper, we propose a new coarse-to-fine KG reasoning ap-
proach called Cafe for explainable recommendation. Unlike tradi-
tional KG based recommendations, our method is characterized by
first composing a user profile to capture prominent user behaviors
in the coarse stage, and then in the fine stage, conducting path
reasoning under the guidance of the user profile. Since the recom-
mendation and path reasoning processes are closely coupled with
each other, the output paths can be regarded as the explanation
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to the recommendations. We extensively evaluate our model on
several real-world datasets and show that the proposed approach
delivers superior results in recommendation performance. Our code
is available from https://github.com/orcax/CAFE.
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