
Automate Page Layout Optimization: An Offline Deep
Q-Learning Approach

Zhou Qin
qinzhouhit@hotmail.com

Amazon
Seattle, WA, USA

Wenyang Liu
lwenyang@amazon.com

Amazon
Seattle, WA, USA

ABSTRACT
The modern e-commerce web pages have brought better customer
experience andmore profitable services by whole page optimization
at different granularity, e.g., page layout optimization, item ranking
optimization, etc. Generating the proper page layout per customer’s
request is one of the vital tasks during the web page rendering
process, which can directly impact customers’ shopping experience
and their decision-making. In this paper, we formulate the request-
rendering interactions as a Markov decision process (MDP) and
solve it by deep reinforcement learning (RL). Specifically, we present
the design and implementation of applying offline Deep Q-Learning
(DQN) to the contextual page layout optimization problem. Through
the offline evaluation method, we demonstrate the effectiveness
of the proposed framework, i.e., the RL agent has the potential to
perform better than the baseline ranker by learning from the offline
data set, e.g., the RL agent can improve the average cumulative
rewards up to 36.69% comparing to the baseline ranker.

CCS CONCEPTS
• Information systems → Recommender systems; Learning
to rank.

KEYWORDS
deep reinforcement learning, recommendation, offline learning,
e-commerce

ACM Reference Format:
Zhou Qin and Wenyang Liu. 2022. Automate Page Layout Optimization:
An Offline Deep Q-Learning Approach. In Sixteenth ACM Conference on
Recommender Systems (RecSys ’22), September 18–23, 2022, Seattle, WA, USA.
ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/3523227.3547400

1 INTRODUCTION
In a typical request-rendering process in e-commerce, generating
the “right” page layout for a specific customer request is important
because different page layout brings different overall display, items,
ads, etc. Rendering the web page, i.e., a configuration of page lay-
out with certain specifications and limitations, can show different
contents to the customer, leading to different customer behaviors,
e.g., re-query, clicks, or purchases, as shown in Figure 1. Normally,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
RecSys ’22, September 18–23, 2022, Seattle, WA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9278-5/22/09.
https://doi.org/10.1145/3523227.3547400

Request 1

Page layout 1

Clicks, views,
purchases, etc.

Request 2

Page layout 2

Items

Page layout

LOGO Search bar

Naviga-
tion Ads

Figure 1: Illustration of the interaction of customer and
search system

in e-commerce systems, a page layout can be configured by varying
the position of item slots and the number of items, which can be
optimized for better presentation in terms of customer experience
and business value.

In the most common case, a page layout optimization system
can be implemented via a ranking fashion [8], e.g., using a ranking
module (aka ranker) to choose from a few well designed layouts.
Regression methods such as Bayesian Linear Regression (BLR) are
often used as the first steps to build such ranking systems due to
low implementation efforts, decent performance, and good explain-
ability. Then the ranker could be utilized to learn from contextual
features and optimize towards one or a few common metrics, e.g.,
revenue, profit, click-through rate (CTR), etc. Online service de-
ployed with a trained ranker then can predict the metrics through
BLR-based models and choose the page layout with the highest
predicted metric value. But such BLR model often suffers from
cumbersome manual feature combination configuration and extra
training for additional metrics. To overcome these weaknesses, we
approach the page layout optimization by deep reinforcement learn-
ing [7] for three reasons: 1) The interaction of the customer and the
e-commerce system is essentially a dynamic sequential decision-
making process (as shown in Figure 1), which fits in the setting of
reinforcement learning. 2) We aim to not achieve the maximum
immediate rewards for the moment but to ultimately achieve the
maximum cumulative long-term rewards across the session, which
can be achieved by reinforcement learning. 3) For future iterations,
a lifelong RL agent in an online setting can continuously learn and
make decisions based on real-time interactions with the customers,
providing a more curated shopping experience for the customers.

For the page layout optimization (PLO), generally, we aim to
train an RL agent which can learn from the historical log data
of customer requests and corresponding events in shopping ses-
sions, including purchases, membership sign-up, sponsored product
clicks, to make a proper decision (i.e., page layout selection) when
encountering new requests. Specifically, we train the agent by of-
fline Deep Q-Learning (DQN) method [1] due to two reasons: 1) We

522

https://orcid.org/0000-0002-1641-772X
https://doi.org/10.1145/3523227.3547400
https://doi.org/10.1145/3523227.3547400

RecSys ’22, September 18–23, 2022, Seattle, WA, USA Qin et al.

can only effectively train the model by offline approaches due to
the limitation of offline data sets, e.g., there is no ground truth for
reward when a new combination of context request and page lay-
out appears, which can only be obtained by real interactions with
customers. 2) The combinations of contextual requests and actions
are huge due to the variations of context features, thus we refer to
DQN rather than traditional Q-learning. The main contributions of
this work are summarized below.

• We design and implement an offline DQN-based framework
for page layout optimization to select page layout given a
contextual request from the customer in order to maximize
cumulative rewards.

• We evaluate our framework through real-world data and
present comprehensive evaluation results showing the ad-
vantage of our proposed framework, e.g., the average re-
wards have increased 36.69% at most.

2 METHODOLOGY
2.1 Data Pipelines and Data Sets
To prepare for training and evaluating agent, for input, we extract
12 different features as context features of a query request, i.e.,
layoutId, queryAlias, location, isMember, maxNumResults, device,
queryType, deviceOs, deviceEnv, month, weekday, hour. All these
features are quantified by one-hot encoding during the data pro-
cessing for modeling. For metrics, we investigate a mixture of a
few major metrics, which are proprietary business metrics such as
profit, revenue, clicks, etc. For output, the ground truth is from the
page layout chosen by the existing policy. We also keep a list of
candidate page layouts for the RL agent to choose from.

2.2 Problem Definition
To formulate the PLO problem in a reinforcement learning fashion,
we first define the basics of a Markov Decision Process (MDP).
In the PLO setting, we define a shopping session as one episode,
which includes a sequence of requests from the customers. The
basics for the MDP can then be denoted by a five-element tuple
G = (S,A,R,P,γ), where S is the set of states; A is the action
space; R is the reward function; P is the transition probability
function; γ is a discount factor. With the definition, our problem
is to train an agent who can maximize the cumulative rewards by
learning from the offline data set. The detailed definition of the
MDP G in our problem is shown below.

• Agent: In PLO, the agent is the page layout ranker that
selects over the page layout candidates, e.g., the ranker can
be set to always choose the page layout with the maximum
expected rewards.

• State S: We define the state by in-session histor-
ical context features and selected page layouts,
i.e., for request record i the state is defined as
(1
i+1

∑i
j=0(encoded(cftj)),

1
i+1

∑i
j=0(encoded(plj))), where

encoded(cftj) denotes a concatenated vector of encoded
context features, and encoded(plj) denotes the selected page
layout.

• Action A: The action space here refers to the set of all
candidate page layouts and action means selecting a specific
page layout given the current state.

• Reward R: The reward is defined as f ((metrici |i ∈

{1, 2, ...,N }), where f can be set as summation operation or
index operation based on real-world scenarios, e.g., optimiz-
ing over a compound metric or a single metric.

• Transition probability P: The transition probability func-
tion determines the transition between the states by taking
action S × A × S → [0, 1], e.g., p(si+1 |si , ai) denotes the
probability of transition to the next state si+1 given the cur-
rent state si and action ai .

• Discount factor γ : The discount factor essentially deter-
mines how much the RL agent cares about the rewards in
the distant future relative to those in the immediate future.

2.3 DQN Framework
In this section, we introduce the design and implementation of our
DQN-based framework, which includes three main components:
1) A dedicated environment “simulating” the interactions as in the
online environment to provide feedback (i.e., reward and new state)
for our agent; 2) A neural network-based agent which maps the
state to action and Q-values; 3) An offline training methodology
enabling the agent to learn from the offline data effectively.

2.3.1 Environment Building. As the first step, we build an environ-
ment that simulates the setting where the agent can interact with
the real-time feedback from the environment. For example, we need
to generate corresponding action ai+1, reward ri+1, and new state
si+1 given the current state si . We build the customized environ-
ment (env) based on a commonly used toolkit Gym [6]. There are
three main functions of the offline environment, i.e., 1) an initializa-
tion function for state, feature dimension, etc.; 2) a step function to
return the next state, action, corresponding rewards, and a session
end indicator; 3) a reset function to start a new session.

2.3.2 Agent. Different from vanilla Q-learning, in DQN, we use a
neural network (NN) to map the states to action and Q-values due
to the large context feature and action space. Our agent is designed
as a neural network with three fully connected layers, with the
state as input and Q-values as output. The dimension of the input is
the dimension of concatenated features dimensions and the output
dimension is the dimension of action space A, i.e., the number
of page layout candidates. The agent neural network works as a
regression model with output values directly used as Q-values. We
use Huber loss function [2] to quantify the difference between the
target Q-values and the current Q-values.

2.3.3 Offline DQN Training. The training process of the DQN
framework is summarized in Figure 2. The whole training methodol-
ogy can be described in a few steps [1, 4]: 1) We call the customized
env to obtain a transition tuple including the current state, action,
reward, and next state. Then we update this tuple in the replay
memory which provides mini-batches for agent NN optimization.
2) We initialize the agent NN twice as the main model and the
target model [5]. 3) We optimize the main model by experience
replay based on Bellman Equation. 4) We update the target model

523

Automate Page Layout Optimization: An Offline Deep Q-Learning Approach RecSys ’22, September 18–23, 2022, Seattle, WA, USA

Table 1: Performance of agent under different platform and treatment settings. (GT means Ground Truth)

Platform Desktop Mobile

Ranker Ranker1 Ranker2 Ranker1 Ranker2

Policy GT Agent GT Agent GT Agent GT Agent

Rewards 1.76 3.41 2.24 3.25 1.38 1.79 2.34 2.43
Improvement (%) NA 93.06 NA 44.85 NA 30.12 NA 3.64

Replay memory

Main model

Target model

Update (50)

Optimizing (4)

Sample mini-batch
1. Initial state si
2. Obtain action, reward,
state si+1 from env
3. Update replay_memory
4. Optimizing main model
5. Update target model

Environment

Figure 2: Overview of offline DQN training pipeline

occasionally, e.g., every 50 steps. The whole training methodol-
ogy can be found in [4]. Notice that for offline training, we do not
choose an action based on the inferred Q-values from the agent NN.
Instead, we strictly replay the episodes from the offline data, which
guarantees we always have the corresponding rewards and avoids
efforts to design a dedicated yet biased reward function.

3 EVALUATION
3.1 Evaluation Methodology
Methods: In this part, we introduce the evaluation methodology
for our offline DQN framework. Specifically, we evaluate our frame-
work by cumulative rewards: we take the reward from the ground
truth data if the agent acts the same as the test ranker, and skip the
transition tuple if the agent acts differently. In the end, we calculate
the average cumulative rewards per request as the final result. The
evaluator details can be found in Policy Evaluator of [3].

Training and Test Split: We evaluate the agent by cross-
validation, i.e., randomly sampling 80% of episodes for training
and the rest 20% for test.

Metrics: For the evaluator, we use average cumulative rewards
in the test data to show the performance, i.e., Raдent = 1

N
∑N
i=0 Ri .

Notice that N is the total number of requests where the agent acts
the same as the ground truth.

Data set: We leverage the data from a large e-commerce com-
pany which were generated based on two rankers. We use Ranker1
to denote the BLR ranker and Ranker2 as the random ranker. We
also use data from both the desktop and mobile platforms to demon-
strate the agent’s performance under different settings.

3.2 Evaluation Results
In this part, we present our evaluation of the DQN agent under
different scenarios, e.g., overall performance by average cumulative
rewards under different platforms and rankers.

Impact of Platform and Ranker. To comprehensively inves-
tigate the performance of our DQN agent, we show the average

cumulative rewards under different combinations of platforms and
rankers in Table 1. Specifically, training and test are done on the
data from the same platform and ranker setting. From the table, we
can see that the agent can generally perform better than BLR ranker
and random ranker on both platforms with proper tuning. We also
find out that the agent can achieve more reward improvement by
learning from the BLR ranker than the random ranker for both
platforms, which is expected, i.e., the agent can learn less from the
data generated by a random ranker.

4 CONCLUSION
In this paper, we perform a comprehensive investigation of applying
offline deep reinforcement learning on page layout optimization.
Specifically, we build an offline data processing pipeline to generate
session-based data with rewards assigned. We then apply Deep
Q-Learning in an offline fashion to the historical data and conduct
a comprehensive evaluation in terms of platforms and rankers. In
general, we show that our DQN agent can learn from the offline
data generated by the existing ranker and achieve a higher average
cumulative reward.

REFERENCES
[1] Hado Hasselt. 2010. Double Q-learning. Advances in neural information processing

systems 23 (2010), 2613–2621.
[2] Peter J Huber. 1992. Robust estimation of a location parameter. In Breakthroughs

in statistics. Springer, 492–518.
[3] Lihong Li, Wei Chu, John Langford, and Xuanhui Wang. 2011. Unbiased offline

evaluation of contextual-bandit-based news article recommendation algorithms.
In Proceedings of the fourth ACM international conference on Web search and data
mining. 297–306.

[4] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing atari with
deep reinforcement learning. arXiv preprint arXiv:1312.5602 (2013).

[5] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.
nature 518, 7540 (2015), 529–533.

[6] OpenAI. 2021. Gym. https://gym.openai.com/docs/.
[7] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An introduc-

tion. MIT press.
[8] Xiangyu Zhao, Long Xia, Liang Zhang, Zhuoye Ding, Dawei Yin, and Jiliang Tang.

2018. Deep reinforcement learning for page-wise recommendations. In Proceedings
of the 12th ACM Conference on Recommender Systems. 95–103.

524

https://gym.openai.com/docs/

	Abstract
	1 Introduction
	2 Methodology
	2.1 Data Pipelines and Data Sets
	2.2 Problem Definition
	2.3 DQN Framework

	3 Evaluation
	3.1 Evaluation Methodology
	3.2 Evaluation Results

	4 Conclusion
	References

