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ABSTRACT
Electric carsharing, i.e., electric vehicle sharing, as an emerging
mobility-on-demand service, has been proliferating worldwide re-
cently. Though providing convenient, low-cost, and environmentally-
friendlymobility, there are also some potential roadblocks in electric
carsharing services due to existing inefficient fleet management
strategies, which relocate the vehicles using predefined periodic
schedules without self-adapting to the highly dynamic user demand,
and many practical factors like time-variant charging pricing also
have not been fully considered. To remedy these problems, in this
paper, we design Record, an effective fleet management system
with joint Repositioning and Charging for electric carsharing based
on dynamic deadlines to improve its operating profits and also sat-
isfy users’ real-time pickup and return demand. Record considers
not only the highly dynamic user demand for vehicle repositioning
(i.e., where to relocate) but also the time-varying charging pricing
for charging scheduling (i.e., where to charge). To perform the two
tasks efficiently, in Record, we design a dynamic deadline-based
distributed deep reinforcement learning algorithm, which gener-
ates dynamic deadlines via usage prediction combined with an
error compensation mechanism to adaptively search and learn the
optimal locations for satisfying highly dynamic and unbalanced
user demand in real time. We implement and evaluate the Record
system with 10-month real-world electric carsharing data, and the
extensive experimental results show that our Record effectively
reduces 25.8% of charging costs and reduces 30.2% of vehicle move-
ments by workers, and it also satisfies user demand and achieves a
small runtime overhead at the same time.

CCS CONCEPTS
•Applied computing→Transportation; •Computingmethod-
ologies → Planning and scheduling.
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1 INTRODUCTION
As an innovative app-based shared mobility mode, carsharing (e.g.,
Zipcar and car2go) has been experiencing rapid growth worldwide
due to its convenience and flexibility for use [17], which also has the
potential to reduce the use of privately-owned vehicles for traffic
congestion alleviation. For example, the carsharing service provider
car2go reached three million users within sixteen months, becom-
ing the largest operator in the flexible carsharing sector, and it is
expected that the number of carsharing users will reach 36 million
by 2025 [1]. In addition, as an additional social benefit, electric car-
sharing services are the most effective way to introduce the public
to electric vehicles, so more and more cities and operators start to
promote electric carsharing recently for gasoline consumption and
carbon footprint reduction [2].

Even though being more flexible and cost-efficient for people
with low annual vehicle usage, the electric carsharing service is
also facing many practical challenges during its promotion and
fleet management processes, e.g., unbalanced usage patterns and
unprofitable business, so potential users may balk from using the
service if there are no available vehicles nearby or no parking
spots available near their destinations. There are typically two
types of tasks for electric carsharing fleet management to satisfy
the future user demand: (i) vehicle Repositioning/Relocation,
i.e., deciding where to relocate vehicles, which means proactively
moving unoccupied shared electric vehicles (i.e., EVs) from one
service station to another service station by workers, and (ii) vehicle
Charging, i.e., deciding where to charge shared EVs, which means
moving low-battery shared EVs from service stations to charging
stations and moving fully-charged EVs from charging stations back
to service stations by workers.

Not surprisingly, many existing works have been done to im-
prove the operational efficiency of carsharing by fleet management
[7, 14]. However, the majority of these works focused on vehicle
repositioning only [7] or charging issue only. Although some recent
works [6] have been done to improve the operational efficiency of
electric carsharing by considering both vehicle repositioning and
charging scheduling, most of them mainly focused on theoretical
optimization models and lacking enough data-driven observations.
Thus, many important practical factors (e.g., user behavior and
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preference, time-variant charging pricing, and strict timing require-
ments of user demand) have not been captured by them. Admittedly,
there are lots of works focusing on location-based search for differ-
ent types of vehicles, e.g., taxi [23], ridesharing [12, 21], bikesharing
[10, 13], e-scooter sharing [8], carsharing [14], but most of these
existing works set predefined periodic schedules for vehicle reposi-
tioning or charging scheduling (e.g., set 10 minutes as a time slot
to make the management decisions [12, 14, 21]). It leads to two
potential drawbacks: (i) it is challenging to fully satisfy the user
demand during intensive usage peaks; (ii) it may cause unnecessary
decision making during low demand time periods and result in
extra operational overhead.

In this paper, to advance existing works, we design Record, a
new data-driven fleet management system with joint reposition-
ing and charging scheduling for electric carsharing to improve
its operational efficiency while satisfying user real-time pickup
and return demand. We first utilize a long-term accumulated elec-
tric carsharing dataset to unveil some real-world issues related to
user behaviors and complicated charging problems. Based on our
data-driven findings, we realize that designing an efficient fleet
management strategy considering both vehicle repositioning and
charging is also challenging due to possible conflicting relationships
(e.g., meet the pickup and return demand of users vs. improve the
profit of the fleet) and many confounding factors (e.g., individual
user behaviors like spatiotemporal usage preference, time-variant
charging pricing, the availability and reachability of shared EVs). To
address these challenges, in Record, we design a Dynamic Deadline-
based Distributed Deep Reinforcement Learning algorithm to learn
sophisticated decisions, which has two key advantages for electric
carsharing fleet management: (i) the dynamic deadline strategy
helps the system to adaptively satisfy the time-varying unbalanced
pickup and return demand based on usage prediction and an error
compensation mechanism; (ii) the distributed deep reinforcement
learning-based decision making enables a long-term benefit of the
system and improves scalability at the cost of less coordination
between shared EVs, which causes a small runtime overhead for
the real-time requirement.

In particular, the key contributions of this paper include:

• We conduct an extensive data-driven investigation by work-
ing with an electric carsharing operator, from which we
found and address some practical issues of electric carshar-
ing: (i) unique usage patterns and user preference, (ii) time-
variant charging pricing, and (iii) the impact factors related
to user behaviors, etc. Based on theses observations, we de-
sign the first dynamic deadline-based carsharing fleet man-
agement system called Record to decide where to optimally
relocate and charge shared EVs with these factors considered.

• In Record, we design a dynamic deadline-based distributed
deep reinforcement learning algorithm to learn which ser-
vice station to relocate and which charging station to charge
for each shared EV. It has two major components: (i) A
prediction-based dynamic deadline mechanism is utilized
to adapt the highly dynamic demand and supply, where the
prediction is performed based on the features we capture
from our data-driven observations, and an error compen-
sation mechanism is also introduced to make our Record

more robust to the prediction error. (ii) Based on the dynamic
deadline setting, a distributed deep reinforcement learning
module is presented, which enables long-term benefits of
the system with a small runtime overhead, and it has the
potential to make our system more sustainable.

• More importantly, we implement and extensively evaluate
our dynamic deadline-based real-time fleet management sys-
tem Record for repositioning and charging of shared EVs
with real-world multi-source data from an electric carshar-
ing operator, including 10-month detailed order records from
over 12,000 unique users and the metadata of stations. The
experimental results show our Record effectively reduces
the charging cost by 25.8% and reduces 30.2% of vehicle
movements by workers without sacrificing user experience.

2 PRELIMINARY AND MOTIVATION
2.1 Electric Carsharing System and Operation
A typical electric carsharing operation paradigm is shown in Fig. 1.
There are four main parties in the system, i.e., operator, users,
shared EVs, and stations. The operator provides a fleet manage-
ment system to monitor all real-time status information of users,
shared EVs, and stations, and makes decisions. In particular, the
real-time location information and order information of users are
recorded and uploaded when they use the mobile app. The real-time
location and status information of shared EVs are also periodically
uploaded to our servers via communication devices. The transaction
information is recorded when users return shared EVs.

Figure 1: An electric carsharing operation paradigm.

Ideally, if there are an unlimited number of shared EVs and park-
ing spots at each service station, users’ pickup and return demand
can be satisfied trivially. However, this assumption is normally
not realistic. The carsharing operator usually possesses a limited
number of shared EVs and parking spots at each service station
due to high costs. Thus, some efforts are needed to balance the
demand and supply, which includes two tasks: relocating shared
EVs between service stations and driving low-battery shared EVs to
charge in charging stations and then distributing fully-charged EVs
back to service stations for satisfying the future demand. Intuitively,
given the unbalanced user demand and supply, how to effectively
decide the optimal locations for shared EVs to relocate and
charge is essential to increase operating profits for the electric
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carsharing operators. To better understand the research challenges
that exist in designing the fleet management system for reposition-
ing and charging, we first perform a comprehensive analysis based
on one real-world dataset.

2.2 Data Description
In this paper, we utilize a real-world electric carsharing operation
dataset collected from the Chinese city Beijing. The time span of the
dataset is from January 2017 to October 2017. The dataset includes
three different types of data, i.e., vehicle usage data, vehicle GPS
data, and station data (including information of service stations
and charging stations). The details of the three types of data are
shown as follows.

• Vehicle Usage Data includes all users’ carsharing usage
records. Each usage record consists of 26 fields describing
shared EVs, users, and usage-related information, e.g., the
order number, the user ID, user age, gender, workplace &
occupation, order time, vehicle pickup and return time and
station, the vehicle ID, usage time, and payment, etc.

• Vehicle GPS Data is collected via the on-board device on
each shared EV. Each GPS record includes fields that describe
the real-time status of each shared EV, e.g., vehicle ID, time-
stamp, and longitude & latitude.

• Station Data describes the service station and charging
station information, e.g., the station IDs, the station names,
coordinates (i.e., longitudes and latitudes), the number of
parking spots in each service station, and the number of
charging points in each charging station.

2.3 Data-Driven Investigation
Based on the multi-source dataset, we perform an extensive data-
driven analysis to understand the existing issues in electric carshar-
ing and motivate our design. The details are shown below.

2.3.1 Highly Dynamic Pickup and Return Patterns. Fig. 2 shows
the pickup and return patterns of shared EVs in one week, and
we found the pickup and return patterns are highly dynamic in
different hours of different days. In particular, (i) We found that the
pickup peaks and return peaks are at different hours of a day, e.g.,
9:00 vs. 18:00, and the highest pickup demand is around 18:00 of
Friday and the highest return demand is around 9:00 of Monday.
(ii) The usage patterns on weekends are different from that on
weekdays, e.g., the pickup peaks of weekends appear around 11:00,
and the return peaks are around 20:00.

Figure 2: Pickup and return distributions in one week.

2.3.2 Unbalanced Spatiotemporal Usage Patterns. We then further
investigate the fine-grained pickup and return distributions of dif-
ferent service stations at different hours of a day. As shown in Fig. 3,
the red circles mean there are more pickups than returns in these
service stations, and the aquamarine circles mean there are more
returns in these service stations. The size of each circle stands for
the absolute value of the difference between the number of returns
and the number of pickups, i.e., |# of returns − # of pickups|.

Figure 3: Spatiotemporal unbalanced usage patterns.

We found the pickup and return patterns have significant differ-
ences between different hours of a day. For example, there are more
vehicle returns in most service stations during late-night hours (e.g.,
0:00-1:00), and both the number of pickups and returns are small.
In the morning rush hours (e.g., 9:00-10:00), there are very high
pickup demand and return demand in different areas, e.g., more
pickups in residential areas and more returns in IT industrial areas.
The number of pickups increases during the day time, and it peaks
in the evening rush hours (e.g., 18:00-19:00). To meet users’ highly
dynamic pickup and return demand, there should be enough shared
EVs for users to pick up and enough parking spots for users to
return vehicles in each service station. However, this is not easy to
be achieved by users themselves, and it is necessary for the operator
to hire specialized workers to relocate shared EVs between service
stations and move low-battery vehicles to charge so that they can
be utilized by users later.

Figure 4: Time-variant charg-
ing pricing in Beijing.

2.3.3 Time-Variant Charg-
ing Pricing. In addition, we
found the charging rates
in Beijing are divided into
three types, i.e., off-peak
prices (low rates), flat prices
(medium rates), and peak
prices (high rates), and the
corresponding electricity rates
are 1.1946, 1.4950, and 1.8044
CNY/kWh, respectively [3]. The time-variant charging pricing of
Beijing is shown in Fig. 4. We found the peak price is 51% higher
than the off-peak price, which means the charging costs can po-
tentially reduce 51% if the operator charges shared EVs in off-peak
charging pricing hours instead of peak charging pricing hours.
Hence, the charging prices should also be considered for the elec-
tric carsharing fleet management, but it is rarely considered by
existing carsharing works.

Hence, based on our data-driven investigations, we found it is
nontrivial to design an efficient electric carsharing fleet manage-
ment system with both vehicle repositioning and charging con-
sideration due to many practical factors, e.g., highly dynamic and
unbalanced usage patterns caused by individual user behaviors and
preference, combined with the time-variant charging pricing, etc.
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3 KEY IDEA AND PROBLEM FORMULATION
Definition 3.1. Deadline: As shown in Fig. 5, suppose we divide a

long time period𝑇 intoℎ consecutive intervals, e.g., {𝐼1, 𝐼2 . . . , 𝐼ℎ} =
{(𝑑0, 𝑑1], (𝑑1, 𝑑2], . . . ,(𝑑𝑖−2, 𝑑𝑖−1],(𝑑𝑖−1, 𝑑𝑖 ],. . . ,(𝑑ℎ−1, 𝑑ℎ]}, where𝑑0
is the start time of the time period and 𝑑𝑖 is the deadline for decision
completion. The (𝑖 − 1)𝑡ℎ deadline is the time when we need to fin-
ish all vehicle repositioning and charging scheduling to satisfy the
user demand by the (𝑖)𝑡ℎ deadline. In other word, the vehicle repo-
sitioning and charging scheduling performed between the (𝑖 − 2)𝑡ℎ
and (𝑖 − 1)𝑡ℎ deadlines will satisfy the user demand arising during
the period between the (𝑖 − 1)𝑡ℎ and (𝑖)𝑡ℎ deadlines. The dynamic
deadline means 𝑑𝑖 is not predefined and unfixed, which needs to be
learned from the real-world demand and supply and usages. The
dynamic deadline generation method will be introduced in Sec. 4.

Figure 5: An illustration of the dynamic deadline.

In the electric carsharing services, user experience is impacted
by the availability of shared EVs and parking spots in the service
stations. Intuitively, users suffer from bad user experience if (i) the
service station is empty when they want to pick up shared EVs, or
(ii) the service station is full when they want to return a shared
EV. Especially, those situations always occur during the rush hours
at some busy service stations if the shared EVs are not managed
effectively. Thus, to guarantee good user experience, these two
dynamic usage behaviors, i.e., pickup and return, need to be taken
into consideration. On the one hand, how many shared EVs are
picked up and returned at each service station determines which
service station is jammed or starved, thus impacts how to perform
vehicle repositioning and charging scheduling; on the other hand,
how to conduct the vehicle movement impacts how many available
shared EVs and parking spots in each service station, which impacts
the future pickups and returns of users.

Therefore, how to make decisions by considering both future
pickup and return demand for good user experience is a key task
of fleet management, which inspires us to (i) characterize the user
pickup& return demand using dynamic service deadlines; (ii) design
a practical and efficient decision making strategy to optimize the
operating profit while all the deadlines can be met.

3.1 Key Idea of Record
In this paper, we design Record, a new data-driven fleet manage-
ment system for electric carsharing to improve the shared EV fleet’s
operating profits (which are highly related to the revenue of the
fleet from serving users, costs for charging, and the payment to
workers for moving the shared EVs) without sacrificing user expe-
rience (e.g., pickup and return demand) based on joint reposition-
ing and charging scheduling with dynamic deadline. In addition,
Record considers different complicated real-world factors.

Due to the sequential decision characteristics of fleet manage-
ment, we formulate the problem as a Markov Decision Process
(MDP), and then we present a dynamic deadline-based distributed
deep reinforcement learning method to achieve our goals, which
not only makes the system adaptively satisfy the time-varying un-
balanced pickup and return demand based on usage prediction, but

also achieves long-term benefits with a small runtime overhead for
the real-time requirement.

3.2 Problem Formulation
Formally, we model the electric carsharing fleet management prob-
lem as an MDP G for 𝑁 agents, which is defined by a five-tuple
G = (S,A,R,P, 𝛾), where S is the set of states; A is the action
space; R is the reward function; P is transition probability func-
tions; and 𝛾 is a discount factor. In an MDP, an agent behaves in
an environment according to a policy that specifies how the agent
selects actions at each state of the MDP. The detailed formulation
of the MDP G in our problem is shown below.

Agent: We consider each unoccupied shared EV (i.e., does not
rent by users) as an agent, and only the unoccupied shared EVs can
be scheduled by our system. Although the number of total agents
in the fleet is always 𝑁 , the number of agents in each time interval
𝑁𝑡 is changing over time.

StateS: The state of a shared EV is defined as a two-dimensional
vector indicating its spatiotemporal status. Suppose there are a set
of service stations {𝑆𝑆} and a set of charging stations {𝐶𝑆}, so
each unoccupied shared EV may be in one of the service stations
or charging stations. We define a local-view state of a shared EV,
𝑠𝑡,𝑙𝑜 = [𝑡, 𝑙] ∈ S𝑙𝑜 , where 𝑡 is the time index and 𝑡 ∈ ((𝑑−1)𝑡ℎ, 𝑑𝑡ℎ],
i.e., the time slot between the (𝑑 − 1)𝑡ℎ and the 𝑑𝑡ℎ deadline.), and
𝑙 ∈ {𝑆𝑆} ∪ {𝐶𝑆} is the location index (i.e., which service station or
charging station the shared EV is in). In this case, the finite local
state space S𝑙𝑜 is a Cartesian product of the set of deadlines and the
set of service stations + charging stations, i.e., S𝑙𝑜 = {𝐷} × ({𝑆𝑆} ∪
{𝐶𝑆}) and the number of states is |S𝑙𝑜 | = |𝐷 | × (|𝑆𝑆 | + |𝐶𝑆 |). In
addition to the local-view state, we also define a global state 𝑠𝑡,𝑔𝑜
to capture the system status includes the number of shared EVs
and parking spots availability at each service station and their real-
time predicted usages in the next interval, and it also includes the
number of unavailable shared EVs at each station in the current and
next time interval. The global-view state 𝑠𝑡,𝑔𝑜 will update in each
time slot. Finally, the state of each available shared EV 𝑘 during the
time slot 𝑡 can be represented as 𝑠𝑡 (𝑘) = [𝑠𝑡,𝑙𝑜 (𝑘), 𝑠𝑡,𝑔𝑜 (𝑘)] ∈ S(𝑘).

Action A: The action space of a shared EV 𝑘 , A(𝑘) specifies
where it should go by the next deadline. We define six types of
actions for the shared EV scheduling. (i) A𝑆 : Staying at the current
service station; (ii) A𝑅 : Relocating to another service station to sat-
isfy user demand in that station or make parking spots for vehicles
that will be returned to this service station; (iii) A𝐶 : scheduling
to Charge in a charging station; (iv) A𝐾 : Keeping charging at the
charging station; (v) A𝐵 : moving Back to a service station; (vi) A𝑃 :
Picked up by a user.

The action to take is decided by two factors: (i) Availability of
shared EVs or parking spots for users in each service station by
deadlines. (ii) Reachability to the charging stations or other service
stations of shared EVs when performing repositioning or charging
scheduling. That means for each service station 𝑠𝑖 ∈ {𝑆𝑆}: (1) # of
pickups ≤ # of available shared EVs; (2) # of shared EVs (available
or unavailable) + # of returns ≤ # of parking spots. Besides, for each
shared EV 𝑘 , it becomes unavailable if its battery level decreases to
below a threshold value 𝜂 (e.g., 30%), which means the low-battery
shared EVs should be scheduled/moved to charge in order to satisfy
future demand. Since there are enough public charging stations
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in Beijing, and workers always check where there are available
charging points, so we envision that the number of charging points
is sufficient for shared EVs, and shared EVs can always be charged
in the nearest available charging stations.

Reward R: Reward usually determines the optimization goal
and reflects the immediate sense of the action in a specific state. A
typical measurement is to estimate the difference of the accumu-
lated reward between with and without an action. We define three
types of immediate rewards here, i.e., positive reward, zero reward,
and negative reward, which capture the money transaction.

Specifically, (i) if a shared EV is picked up by a user during
certain interval (i.e., A𝑃 ), it will have a positive reward, which is
equivalent to the money paid by the user; (ii) if a shared EV stays
at the current service station (i.e., A𝑆 ), it will not be used by users
(i.e., no revenue) and also have no charging and moving costs, so
the immediate reward is zero; (iii) if a shared EV is relocated from
one service station to another service station (i.e., A𝑅 ), scheduled
from one service station to a charging station (i.e., A𝐶 ), or moved
backed to a service station from a charging station (i.e., A𝐵 ), it will
have a negative reward due to the labor cost. (iv) if a shared EV is
charging in a charging station (i.e.,A𝐾 ), it will also have a negative
reward due to the charging cost, which is explicitly related to the
charging time and charging prices. Implicitly, the charging cost is
also related to the previous usages and repositionings since these
activities will directly cause the energy consumption of shared EVs.
Hence, we define the reward function as follows

𝑅U −𝐶C −𝐶M =

𝑚∑
𝑖=1

𝑅
(𝑖 )
𝑢 −

𝑛∑
𝑗=1

(
𝜆 ·𝑇 ( 𝑗 )

𝑐

)
− 𝜙 × 𝑧, (1)

where 𝑅U is the total revenue from serving users; 𝐶C is the total
charging cost of the electric carsharing fleet; 𝐶M is the total labor
cost for moving shared EVs, e.g., relocating shared EVs from one
service station to another service station and moving shared EVs to
charging stations and moving back to services stations; 𝑅 (𝑖)𝑢 is the
revenue from serving 𝑖𝑡ℎ electric carsharing order;𝑚 is the total
number of served orders; 𝑛 is the total number of charges of the
fleet. 𝑇 ( 𝑗)

𝑐 is a three-dimensional vector 𝑇 ( 𝑗)
𝑐 =

[
𝑇
( 𝑗)
𝑝 ,𝑇

( 𝑗)
𝑓
,𝑇

( 𝑗)
𝑜

]
describing the charging time of 𝑗𝑡ℎ charging event, where𝑇 ( 𝑗)

𝑝 ,𝑇 ( 𝑗)
𝑓

,

and𝑇 ( 𝑗)
𝑜 denote the time in peak, flat, and off-peak charging pricing

hours of the 𝑗𝑡ℎ charging event, respectively. Similarly, we also
describe the time-varying charging pricing as a three-dimensional
vector 𝜆 =

[
𝜆𝑝 , 𝜆𝑓 , 𝜆𝑜

]
, where 𝜆𝑝 , 𝜆𝑓 , 𝜆𝑜 denote the charging prices

during peak, flat, and off-peak hours, respectively (as shown in
Fig. 4). 𝜙 is the payment to workers for each movement of shared
EVs (Note: one worker can move only one vehicle at a time), and we
intuitively envision it is a constant value for simplification; and 𝑧 is
the total number of vehicle movements by workers, so reducing the
number of vehicle movements by workers will potentially increase
the profit of the electric carsharing fleet.

Hence, if we can guarantee all current demand to be satisfied,
then the total revenue from serving users 𝑅U should be the same.
Then we can improve the profit of the operator by reducing its
charging cost 𝐶C for the electric carsharing fleet and labor cost for
moving shared EVs 𝐶M .

Probability function P defines the transition probability be-
tween states by taking actionS×A×S → [0, 1], e.g., 𝑝 (s𝑡+1 |s𝑡 , a𝑡 )

denotes the probability of transition to the next state s𝑡+1 given the
action a𝑡 in the current state s𝑡 . Our goal is to find a function that
maps a state to the best action that each shared EV can take.

Discount factor 𝛾 essentially determines how much the rein-
forcement learning agents care about rewards in the distant future
relative to those in the immediate future. The value of 𝛾 is typically
selected from [0, 1), so the final expected reward in the infinite hori-
zon will be convergent and bounded to a finite number. If 𝛾 = 0, the
agent will be completely myopic and only learn about actions that
produce an immediate reward without considering future rewards.

4 DYNAMIC DEADLINE-BASED
DISTRIBUTED DRL

In this section, we present the algorithm design in Record.

4.1 Dynamic Deadline Based on Prediction
As indicated in Fig. 2 and Fig. 3, the number of pickups and re-
turns are highly dynamic in both spatial and temporal dimensions,
so it may be challenging to satisfy the pickup demand and return
demand in some usage peak hours and it may also cause high opera-
tional costs during low demand hours with only predefined periodic
schedules. Hence, in this paper, we develop a dynamic deadline
strategy to address this issue. An illustration of the dynamic dead-
line setting is shown in Fig. 6. Intuitively, if dense deadlines are
set up during pickup & return peak hours and sparse deadlines in
other hours, the system efficiency can be effectively improved by
relocating or charging vehicles based on the deadline distribution.

Figure 6: The key idea of the dynamic deadline setting.
Definition 4.1. We divide a long time period 𝑇 into a set of small

time slots, e.g., we set the time slot length as 5 minutes to capture
the more fine-grained pickup and return patterns. We then define
the net flow of a service station in a time slot as the number of
returns (i.e., inflow) minus the number of pickups (i.e., outflow) in
this time slot.

For each time slot 𝑡𝑖 , we calculate the net flow 𝑓𝑡𝑖 of a service
station in this time slot based on the real-world order records, i.e.,
the net flow value will be deducted by one if there is a pickup
activity and the net flow value will be added by one if there is a
return activity.

Fig. 7(a) shows an example of the calculation of the net flow of a
service station. In this example, there are 10 small time slots, and
the value in each time slot denotes the net flow in this time slot,
e.g., the net flow of the service station is 1 in 𝑡1 and -2 in 𝑡4, which
means there are one more returns than pickups in 𝑡1 and there are
two more pickups than returns in 𝑡4. Based on the net flow 𝑓𝑡𝑖 of the
service station in each time slot, we then calculate the accumulated
net flow in multiple time slots, which is defined as follows:
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Figure 7: The (accumulated) net flow of a service station.

Definition 4.2. Given a series of time slots {𝑡1, 𝑡2, . . . , 𝑡𝑚}, the
accumulated net flow by 𝑡𝑖 of a service station is defined as the
sum of all net flows of previous time slots, i.e., 𝐹𝑡𝑖 =

∑𝑖
𝑗=1 𝑓𝑡𝑖 .

Fig. 7(b) shows the corresponding accumulated net flow of Fig. 7(a).
Each value 𝐹𝑡𝑖 in time slot 𝑡𝑖 is the sum of the net flow from time
slot 𝑡1 to 𝑡𝑖 . For example, the accumulated net flow in 𝑡3 of the
service station is 𝐹𝑡3 = 𝑓𝑡1 + 𝑓𝑡2 + 𝑓𝑡3 = 3.

Suppose there are 𝑁 shared EVs {𝐸𝑉1, 𝐸𝑉2, · · · , 𝐸𝑉𝑁 } in the elec-
tric carsharing fleet, and 𝑛 service stations {𝑠1, 𝑠2, · · · , 𝑠𝑛} are de-
ployed across the city to park these EVs. The capacity of each service
station is {𝑐 (1), 𝑐 (2), · · · , 𝑐 (𝑛)}, and there are {𝑣 (1), 𝑣 (2), · · · , 𝑣 (𝑛)}
available shared EVs at each service station in the initial state (e.g.,
𝜏0 in Fig. 7). If the accumulated net flow of service station 𝑠𝑖 over
the time period𝑇 is 𝐹 (𝑖) = {𝐹𝑡1 (𝑖), 𝐹𝑡2 (𝑖), . . . , 𝐹𝑡𝑚 (𝑖)}, and there are
𝑘 (𝑖) = {𝑘𝑡1 (𝑖), 𝑘𝑡2 (𝑖), . . . , 𝑘𝑡𝑚 (𝑖)} shared EVs that have the battery
level lower than a threshold resulting in unavailable at this service
station over time, then we can find that there are 𝐹𝑡 𝑗 (𝑖)+𝑣 (𝑖)−𝑘𝑡 𝑗 (𝑖)
available shared EVs at the service station 𝑠𝑖 in the 𝑗𝑡ℎ time slot. If
the predicted number of pickups and returns at 𝑠𝑖 in the ( 𝑗 + 1)𝑡ℎ
time slot is 𝑝𝑡 𝑗+1 (𝑖) and �̂�𝑡 𝑗+1 (𝑖), and the estimated number of low-
battery shared EVs is �̂�𝑡 𝑗+1 (𝑖), so the predicted net flow of 𝑠𝑖 in
( 𝑗 + 1)𝑡ℎ time slot is 𝑓𝑡 𝑗+1 (𝑖) = 𝑝𝑡 𝑗+1 (𝑖) − �̂�𝑡 𝑗+1 (𝑖) (more detailed
prediction process will be elaborated in Sec. 4.2). Hence, the extra
shared EV demand 𝑣𝑑𝑡 𝑗+1 (𝑖) and parking spot demand 𝑝𝑑𝑡 𝑗+1 (𝑖) of
𝑠𝑖 in ( 𝑗 + 1)𝑡ℎ time slot are

𝑣𝑑𝑡 𝑗+1 (𝑖) =𝑚𝑎𝑥{0,−𝑓𝑡 𝑗+1 (𝑖) − (𝐹𝑡 𝑗 (𝑖) + 𝑣 (𝑖) − 𝑘𝑡 𝑗 (𝑖))}, (2)

𝑝𝑑𝑡 𝑗+1 (𝑖) =𝑚𝑎𝑥{0, 𝑓𝑡 𝑗+1 (𝑖) + (𝐹𝑡 𝑗 (𝑖) + 𝑣 (𝑖)) − 𝑐 (𝑖)}. (3)

Definition 4.3. We define the deficiency count of the service sta-
tion 𝑠𝑖 in the ( 𝑗+1)𝑡ℎ time slot as𝑑𝑐𝑡 𝑗+1 (𝑖) =𝑚𝑎𝑥{𝑣𝑑𝑡 𝑗+1 (𝑖), 𝑝𝑑𝑡 𝑗+1 (𝑖)}.

For the 𝑛 service stations and 𝑚 time slots, we can obtain a
𝑛 ×𝑚 dimensional station deficiency matrix 𝐷𝑛×𝑚 . Each row of the
matrix stands for the deficiency count of a service station over time.
However, if we make a scheduling decision in every time slot, it
may cause very high overhead for the fleet management system.
Hence, in this paper, we try to set a sequence of dynamic scheduling
deadlines, which combine several 5-minute small time slots into an
interval based on the deficiency count of all service stations.

Suppose we finally combine the 𝑚 time slots into ℎ intervals,
e.g., {𝐼1, 𝐼2, . . . , 𝐼𝑖 , . . . , 𝐼ℎ} = {(𝜏0, 𝑑1], (𝑑1, 𝑑2], . . . , (𝑑𝑖−1, 𝑑𝑖 ], . . . ,
(𝑑ℎ−1, 𝑑ℎ]}, where 𝜏0 is the start time, each interval could consist
of different number of small time slots, and 𝑑𝑖 is the 𝑖𝑡ℎ deadline
for shared EV decision making. The basic idea of the dynamic dead-
line is that the deficiency count between two consecutive deadlines

should not be too small or too large for all service stations (i.e., under
a threshold Ψ), which means that there should be a certain amount
of demand for extra shared EVs or parking spots in some service
stations before making a management decision and the workers
can finish movements in time, and we should satisfy enough supply
for shared EVs and parking spots of the next interval 𝐼 𝑗+1 in all
service stations by the deadline 𝑑 𝑗 .

To achieve the above objective, we first combine the maximum
entry of each column of 𝐷𝑛×𝑚 to obtain a max deficiency vector
𝐷𝑚 = [𝑚𝑎𝑥𝐷:,1,𝑚𝑎𝑥𝐷:,2, . . . ,𝑚𝑎𝑥𝐷:,𝑚]. We first empirically select
an initial threshold Ψ based on observations of 𝐷𝑚 , then the thresh-
old Ψ will also dynamically update with the operation of the fleet
management system.

4.2 Feature Extraction for Prediction
As shown in the above dynamic deadline generation procedure, ac-
curate net flow predictions 𝑓𝑡 (𝑖) are very important as they directly
impact the dynamic deadline generation and the future search pro-
cess. Hence, in this paper, we conducted a comprehensive feature
extraction process to uncover the factors that may impact users’
electric carsharing usage based on our data-driven observations
(part of them are reported in Sec. 2.3). We extracted five categories
of basic features (i.e., temporal features, spatial features, historical
usage features, user demographic features, and contextual features)
that are highly related to users’ usage behaviors to predict the net
flow of each service station in a small time slot more accurately,
which include 12 features in total.

After identifying the related features, we then develop an XG-
Boost [4]-based model to predict the net flow of each service station
in each time slot based on the long-term real-world electric carshar-
ing operation data. XGBoost uses a gradient boosting framework
and is one of the most effective machine learning models for pre-
diction. Besides, the base model of XGBoost is a decision tree, so it
has the potential to show better performance against overfitting
and it normally shows the best performance for the problems with
small-to-medium structured/tabular data. The predicted net flow of
the developed model can be represented as

𝑓𝑖 =

𝐾∑
𝑘=1

ℎ𝑘 (x𝑖 ), ℎ𝑘 ∈ H, (4)

where𝐾 is the number of trees; x𝑖 is the 𝑖𝑡ℎ input, including the five
categories of extracted features (12 in total); 𝑓𝑖 is the corresponding
predicted output, which is learned by a tree ensemble model with
a collection H of 𝐾 functions ℎ𝑘 . Then the objective function at
training round 𝑡 iteration can be denoted as

𝐽 (𝑡 ) =
𝑛∑
𝑖=1

(𝑙 (𝑓𝑖 , 𝑓𝑖 )) +
𝑡∑
𝑘=1

Ω (𝑓𝑘 ), (5)

where 𝑙 (.) is the loss function (e.g., Square loss); Ω is the regular-
ization term (e.g., 𝐿2 norm), which measures the model complexity.

4.3 Prediction Error Compensation Mechanism
In practice, it is possible to make inaccurate predictions due to
some complicated and unexpected usage behaviors even using ad-
vanced prediction methods combined with good feature extraction.
Hence, in this paper, we further design an Error Compensation (EC)
mechanism to mitigate the influence of inaccurate predictions.
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Since the objective of our work is to improve the operational
efficiency of the electric carsharing fleet without sacrificing user
experience, our system should guarantee users’ pickup and return
demand by each deadline. However, if the absolute value of the pre-
dicted net flow is much smaller than the absolute value of the true
value in some service stations, it may cause some users’ demand
cannot be satisfied. Hence, we add a positive prediction compen-
sation term 𝜖 , which is an adjustable hyperparameter, in Eq. 2 and
Eq. 3 to obtain the following Eq. 6 and Eq. 7 to make the system
more robust to prediction errors. The 𝜖 in Eq. 6 is utilized to com-
pensate for the error that the predicted pickup demand smaller than
the real pickup demand. The 𝜖 in Eq. 7 is utilized to compensate for
the error that the predicted parking spot demand smaller than the
real parking spot demand.

𝑣𝑑
′

𝑡 𝑗+1 (𝑖) =𝑚𝑎𝑥 {0,−𝑓𝑡 𝑗+1 (𝑖) − (𝐹𝑡 𝑗 (𝑖) + 𝑣 (𝑖) − 𝑘𝑡 𝑗 (𝑖)) + 𝜖 } (6)

𝑝𝑑
′

𝑡 𝑗+1 (𝑖) =𝑚𝑎𝑥 {0, 𝑓𝑡 𝑗+1 (𝑖) + (𝐹𝑡 𝑗 (𝑖) + 𝑣 (𝑖)) − 𝑐 (𝑖) + 𝜖 } (7)

Based on the new extra demand of shared EVs 𝑣𝑑
′

𝑡 𝑗+1 (𝑖) and

demand of parking spots 𝑝𝑑
′

𝑡 𝑗+1 (𝑖), we obtain the new station defi-
ciency matrix 𝐷

′
𝑛×𝑚 and max deficiency vector 𝐷𝑚

′
for dynamic

deadlines generation as shown in Sec. 4.1.

4.4 DRL-based Decision Making
After determining the deadlines, we focus on the problem of making
decisions for unoccupied shared EVs. The goal of the real-time
repositioning and charging for fleet management is to improve the
profit of the operator without sacrificing user experience, which
means that there should always be available shared EVs in a service
station when users pick shared EVs up, and there should always be
unoccupied parking spots when users return shared EVs. Here, we
consider the revenue from serving users and costs for charging and
repositioning as shown in Eq. 1.

The goal of the agent is to learn a policy 𝜋 (𝑎𝑡 |𝑠𝑡 ) so as to maxi-
mize the expected cumulative future rewards 𝐺𝑡 =

∑𝑇
𝑖=0 𝛾

𝑖𝑅𝑡+𝑖+1
in an episode 𝑇 starting from time 𝑡 . To solve an MDP, a common
objective is to learn the value functions, including the state-value
function𝑉𝜋 (𝑠) and the state-action value function (i.e., Q-function)
𝑄𝜋 (𝑠, 𝑎), where𝑉𝜋 (𝑠) = E𝜋 [𝐺𝑡 |𝑠𝑡 = 𝑠] = E𝜋

[∑𝑇
𝑖=0 𝛾

𝑖𝑅𝑡+𝑖+1 |𝑠𝑡 = 𝑠
]

and 𝑄𝜋 (𝑠, 𝑎) = E𝜋
[∑𝑇

𝑖=0 𝛾
𝑖𝑅𝑡+𝑖+1 |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎

]
, which measures

the expected discounted sum of rewards obtained from state 𝑠 by
taking action 𝑎 at time 𝑡 and following policy 𝜋 .

In this paper, we design a dynamic deadline-based deep rein-
forcement learning (DRL) method (i.e., Dynamic Deadline-based
Distributed Deep Q-Network (D4QN)) to learn the optimal actions
for individual shared EVs, i.e., all available shared EVs sequentially
learn which action to take between two consecutive deadlines. The
advantage of our D4QN lies in its computational efficiency since we
streamline our D4QN training and each individual shared EV inde-
pendently learns its own optimal policy, which ensures scalability
at the cost of less coordination between EVs. This is challenging to
be achieved by standard DQN or a multi-agent formulation [12, 14].

We define the optimal Q-function for 𝑘𝑡ℎ shared EV as the maxi-
mum expected return achievable by any policy 𝜋𝑡 , which is

𝑄∗ (𝑠, 𝑎) = max
𝜋
E

[
𝑇∑
𝑖=0
𝛾𝑖𝑅

(𝑘 )
𝑡+𝑖+1 |𝑠𝑡

(𝑘 ) = 𝑠, 𝑎𝑡
(𝑘 ) = 𝑎, 𝜋𝑡

]
, (8)

which satisfies the Bellman Equation:
𝑄∗ (𝑠, 𝑎) = E𝑠′

[
𝑅𝑡+1 + 𝛾 max

𝑎′
𝑄∗ (𝑠′, 𝑎′) |𝑠𝑡 (𝑘 ) = 𝑠, 𝑎𝑡 (𝑘 ) = 𝑎

]
. (9)

For the electric carsharing fleet management problem, it is chal-
lenging to obtain the Q-function as a table containing values due
to the large-scale states and actions. Hence, we use deep neural
networks to approximate the Q-value function with parameters 𝜃 ,
which makes 𝑄 (𝑠, 𝑎;𝜃 ) ≈ 𝑄∗ (𝑠, 𝑎). This can be achieved by updat-
ing 𝜃𝑖 at each iteration 𝑖 to minimize the following loss function:

L𝑖 (𝜃𝑖 ) =
(
𝑅𝑡+1 + 𝛾 max

𝑎′
𝑄 (𝑠′, 𝑎′;𝜃−𝑖 ) −𝑄 (𝑠, 𝑎;𝜃𝑖 )

)2
, (10)

which is the squared difference between the target Q values 𝑅𝑡+1 +
𝛾 max

𝑎′
𝑄 (𝑠 ′, 𝑎′;𝜃−

𝑖
) and the approximate Q values 𝑄 (𝑠, 𝑎;𝜃𝑖 ). To

make the network updates more stable, we utilize the experience
replay technique [16], which copies 𝜃 to another neural network 𝜃−

𝑖
so that we can fix the Q-value targets temporarily. This forms an
input dataset that is stable enough for training. 𝜃−

𝑖
are the parame-

ters from the previous iteration, which are fixed and not updated
for learning 𝜃𝑖 . Then we utilize stochastic gradient descent (SGD)
with respect to the actual network parameters to minimize this
loss. Finally, we obtain the action for each unoccupied shared EV
to take.

5 EVALUATION
5.1 Evaluation Data
We utilize 10-month electric carsharing usage data generated by
12,375 unique users in the Chinese city Beijing for evaluation. More
than 86,700 usage records are generated by the electric carsharing
fleet during this period. In addition to the vehicle usage data, the
evaluation dataset also includes the vehicle GPS data, and metadata
of 185 service stations and 226 charging stations. The detailed data
information has been introduced in Sec. 2.2.

5.2 Evaluation Results
5.2.1 Prediction Performance. We compare the XGBoost-based
method with other state-of-the-art prediction approaches, includ-
ing Historical Average (HA), Auto-Regressive and Moving Average
(ARMA), Deep Neural Network (DNN), and Random Forest (RF).
As we found the decision making is directly related to the net flow
of service stations, so we predict the net flow (i.e., # of Returns- #
of Pickup) of each service station instead of predicting the number
of pickups and returns separately.

We adopt the Mean Absolute Error (MAE) to compare the pre-
diction performance of different methods, which is computed as
𝑀𝐴𝐸 = 1

𝑛

∑𝑛
𝑖=1

���𝑦 (𝑖) − 𝑦 (𝑖) ���, where 𝑦 is the predicted value, 𝑦 is the
true value, and 𝑛 is the total number of predictions.

Fig. 8 gives evidence of the advantages of the XGBoost-based
approach since its MAE is as low as 0.73, which indicates it achieves
very high accuracy for the net flow prediction of most service
stations in all the time.

We found some other methods like RF also achieves good perfor-
mance. One possible reason for the high prediction accuracy is our
data-driven feature extraction as we extract 5 categories of features
that are highly related to users’ pickup and return behaviors based
on our data-driven observations.
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Figure 8: MAE of different
prediction methods.

Figure 9: Average % of satis-
fied user demand.

5.2.2 Dynamic Deadline vs. Fixed Deadline. In this paper, we de-
signed a dynamic deadline mechanism to achieve a win-win per-
formance, i.e., satisfactory user experience and low overhead. Hence,
we compare Record (i.e., dynamic deadline + D4QN) with strate-
gies of different fixed deadlines + D4QN, and we set four typical
fixed deadlines for comparisons, i.e., setting a deadline for every
30 minutes (i.e., D4QN + Fix30 or Fix30 for short), 60 minutes (i.e.,
Fix60), 120 minutes (i.e., Fix120), and 240 minutes (i.e., Fix240).

Fig. 9 shows the average percentage of satisfied user demand
(pickup and return) of Record and its variants with different fixed
deadlines, which implicitly reflects the user experience, i.e., high
satisfied user demand means more satisfaction since more users
can have access to the services when they want to pick up or return
shared EVs. From Fig. 9, we found our dynamic deadline mechanism
can satisfy all user demand on different days. However, with the
duration between two consecutive deadlines becomes larger, more
users may not be able to have access to available shared EVs or
parking spots, resulting in poor user experience.

Figure 10: Percentage reduc-
tion of movements.

Figure 11: Monthly charging
cost distributions.

Fig. 10 shows the percentage reduction of vehicle movement
by extra workers of Record and its variants with different fixed
deadlines, which is calculated by (Current number of movements
by workers - number of movements with different deadline set-
tings)/Current number of movements. From Fig. 10, we found
Record reduces 30.2% of movements by workers. With more sparse
deadlines, the number of movements by workers becomes less, e.g.,
Fix240 causes fewer movements than Record, but more demand
cannot be satisfied by Fix240 as shown in Fig. 9. With more dense
deadlines, the overhead becomes higher due to frequent movements
for relocating or charging shared EVs. Since the labor cost is pos-
itively correlated with the number of movements, the reduction
of movements potentially indicates labor cost reduction and profit
increase for the shared EV fleet.

5.2.3 Performance of Different Fleet Management Strategies. To
show the effectiveness of our Record, we compare it with (i) Ground
Truth (GT), which is extracted from our real-world data; (ii) Best-
effort [11], which means once there is vehicle demand or parking

demand in a service station, the vehicle repositioning will be per-
formed to satisfy the demand. Once the battery level of a shared EV
is below the threshold, it will be scheduled to charge for satisfying
future user demand. In this case, the Best-effort can also satisfy user
demand; (iii) PPO in [14], which is also a state-of-the-art electric
carsharing repositioning algorithm based on DRL.

Since one of the most important factors for electric carshar-
ing fleet management is the operation profit/cost, so we show the
charging cost distribution at different times of a day under different
management strategies in Fig. 11. We found our Record can reduce
charging costs during most time of the day since it can reduce some
unnecessary repositioning and leave some shared EVs to charge in
the late-night time, during which the charging price is low.

In total, our Record can reduce about 25.8% of charging costs
for the electric carsharing fleet. Due to the frequent repositioning
and charging activities of Best-effort, it causes higher charging
costs in some high charging pricing durations, e.g., 13:00-15:00 and
19:00-20:00, which leads to a 3.9% of charging cost increase. Even
though PPO is also based on DRL, it sets periodic deadlines for
repositioning, so it also causes higher charging costs.

6 DISCUSSION
6.1 Practical Impacts

• Electric Carsharing Management. User experience and
profitability of operators are two key factors that impact the
electric carsharing promotion. From this work, we found our
dynamic deadline-based fleet management system Record
can increase the operating profits for electric carsharing
operators and satisfy highly dynamic user pickup and return
demand, so it has the potential to be reapplied to other cities
and enlarge the electric carsharing fleets. In addition, our
system can be also easily adopted by other electric carsharing
operators due to its generalizability.

• Fleet Management of Electric Bikesharing, E-Scooter
Sharing, and Electric Ridesharing: Even though the pa-
per focuses on the electric carsharing, we believe our joint
real-time repositioning and charging scheduling and the dy-
namic deadline-based DRL method have the potential to be
reapplied to other types of EV fleet management, e.g., elec-
tric bikesharing, e-scooter sharing and electric ridesharing.
The difference is that one worker can move multiple e-bikes
and e-scooters to charge or to other places, and the rideshar-
ing drivers will perform the repositioning and charging by
themselves instead of extra workers.

6.2 Milestones Reached
In this project, we have worked with an electric carsharing opera-
tor by accessing its data for our data-driven investigation and the
dynamic deadline DRL-based fleet management system design. We
have presented our design to the fleet management team and ob-
tained its feedback.We have verified our design based on large-scale
data from a big city in China to show its potential.

7 RELATEDWORK
In this section, we summarize two types of related works, i.e., vehi-
cle repositioning and EV charging recommendation.
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7.1 Vehicle Repositioning
Owing to the availability of the rich vehicle location information
and operation log data, there is a surge number of work on address-
ing the unbalanced demand and supply problem by vehicle repo-
sitioning for different mobility modes, e.g., taxi [23], ridesharing
[12, 21], bikesharing [10, 13], e-scooter sharing [8], and carsharing
[9]. Lin et al. [12] designed a management system for rideshar-
ing platforms to maximize the gross merchandise volume of the
platforms by relocating available vehicles to the locations with
a larger demand-supply gap than the current one. Liu et al. [13]
formulated the station-based bikesharing repositioning problem as
mixed integer nonlinear programming to minimize the total travel
distance.

Different from existing vehicle repositioning works, in this paper,
we study an innovative transportation modality, i.e., electric carshar-
ing, which has essential differences with existing mobility modes
from both the spatial and temporal dimensions. In addition, differ-
ent fleets have different management modes, so they have different
repositioningmechanisms. Moreover, existing vehicle repositioning
works rarely consider complicated charging issues and potential
impacts of dynamic deadlines.

7.2 EV Charging Recommendation
In the recent decade, there is also an increase of works on EV
charging recommendation [16, 18–20], which is also related to our
work. Wang et al. [16] designed a charging recommendation system
to learn the charging policy for reducing the range anxiety of e-
taxi drivers. Dong et al. [5] developed a real-time EV charging
recommendation framework for e-taxi fleets, which informs each
e-taxi driver at runtime when and where to charge. Wang et al. [19]
presented a data-driven fairness-aware charging recommendation
method to reduce charging idle time of e-taxi fleets.

Different from these works, our paper focuses on a new type
of EV, i.e., electric carsharing. Shared EVs need to be relocated be-
tween different service stations to satisfy the highly dynamic and
unbalanced spatiotemporal usage distributions. The interactions
between service stations and charging stations also make it chal-
lenging to manage electric carsharing fleet efficiently compared to
only charge other types of EVs. More importantly, we designed a
dynamic deadline-based fleet management strategy, which has not
been adopted by existing works.

8 CONCLUSION
In this paper, we design a new effective data-driven fleet manage-
ment system called Record jointly considering repositioning and
charging location search for electric carsharing with dynamic dead-
lines to improve overall operating profits without sacrificing user
experience. In Record, we designed a dynamic deadline-based dis-
tributed deep reinforcement learning algorithm D4QN to adaptively
satisfy the time-varying unbalanced pickup and return demand.
The dynamic deadlines are learned through usage prediction com-
bined with error compensation mechanism. Extensive experimental
results show that our designed Record effectively reduces 25.8% of
charging costs and reduces 30.2% of vehicle movements by workers
for an electric carsharing fleet. Record also satisfies users’ real-time
demand and achieves a small runtime overhead.
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A APPENDIX FOR REPRODUCIBILITY
A.1 Extracted Features
Owing to the large-scale promotion and long-term operation of
the electric carsharing fleet, we have accumulated plenty of data to
understand the usage patterns of electric carsharing services, which
provides us a good opportunity to predict the net flow (i.e., user
demand). The details of the five categories of extracted features
based on our data-driven investigation are shown below:

Temporal Features FT : From Fig. 2 and Fig. 3, we found the
number of pickups and returns are closely related to the time factor.
Hence, we extract three temporal features: the time of a day (e.g.,
we divide one day into a set of time slotsℱ𝑡𝑜𝑑 , and each time is set
to be 5 minutes for a fine-grained prediction), the day of a week
ℱ𝑑𝑜𝑤 , and holiday ℱℎ𝑜𝑙 .

Spatial Features FS :We found users have different purposes
for using shared EVs, which result in different spatial usage patterns,
e.g., people who use carsharing for commuting may pick shared
EVs in residential areas and then return them in the industrial areas.
Hence, we divide the city into seven categories of functional areas
based on the method in [22] (i.e., residence, entertainment, business,
industry, education, scenery spot, and suburb) to capture the spatial
patterns, which forms the functional area feature ℱ𝑎𝑟𝑒𝑎 .

Historical Usage Features FH : Since the electric carsharing
usages show a weekly pattern, hence, we utilize our long-term
carsharing operation data to capture the historical usage patterns.
We extract the net flow of each service station in the same time slot
of three previous consecutive weeks (i.e., ℱℎ𝑖𝑠1, ℱℎ𝑖𝑠2, ℱℎ𝑖𝑠3) as
the historical usage features.

User Demographic Features FD : We found that the users
who use shared EVs in different regions have different demographic
features (e.g., more young male users use shared EVs in areas with
many IT companies, and more young female users use shared EVs
in areas with many financial companies), so they may have different
usage patterns due to their job characteristics. Therefore, the user
demographic features are also important for the net flow prediction.
Finally, we extract the percentage of male users and female users as
the gender featureℱ𝑔𝑒𝑛𝑑𝑒𝑟 of each service station, andwe utilize the
users’ average age as the age feature ℱ𝑎𝑔𝑒 of each service station.

Contextual Features FC : We also found the contextual fea-
tures like weather conditions have a great impact on users’ electric
carsharing usage behaviors. Hence, we collect meteorology data
from thewebsite [15] and extract features for the net flow prediction.
We identify three contextual features: weather ℱ𝑤𝑒𝑎 , temperature
ℱ𝑡𝑒𝑚 , and wind speed ℱ𝑤𝑖𝑛𝑑 . Among these features, the weather
feature is divided into three categories: sunny (or cloudy), rainy,
and snowy. The temperature feature has also three types of values:
cold (lower than 15 ◦C), mild (15 -30 ◦C), hot (over 30 ◦C). The
wind speed is divided into two categories according to the Beaufort
number: light (≤ 3) and heavy (> 3).

A.2 Implementation Environment and
Parameters Setting

In this project, we are working with an electric carsharing operator
in Beijing, who collects the real-world operation data and provides
us the data to improve its operational efficiency. Due to the large size
of our electric carsharing GPS and order data, it requires significant
efforts for efficient management, querying, and processing. Hence,
we performed a detailed cleaning process to filter out the error,
duplicate, and incomplete order and vehicle GPS data on a high-
performance cluster with Spark and Hadoop, which was equipped
with 80 TB memory and 20 nodes.

We verify our Record including train and test our prediction
models and scheduler on a desktop with 32GB memory, 1TB HDD
storage, Intel Xeon CPU E5-1660 v3, and a Tesla K40c, installed
with the latest Windows 10 and Python coding environment.

For the D4QN-based decision making strategies, we have the fol-
lowing parameter setting: the same three hidden layer Q-network
with 128, 64, and 32 nodes from the first to last hidden layer; the
activation functions of all hidden units are ReLu, and output layers
of the Q-networks use Softmax activation functions. All the experi-
ments are repeated 10 times to ensure the robustness of the results.
The batch size of all deep learning networks is set to be 2000, and
we utilize AdamOptimizer with a learning rate of 0.001. For the
discount factor, we select 𝛾 = 0.99, so the state value is computed
within a decaying future horizon.
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