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Human mobility data may lead to privacy concerns because a resident can be re-identi�ed from these data by malicious
attacks even with anonymized user IDs. For an urban service collecting mobility data, an e�cient privacy risk assessment is
essential for the privacy protection of its users. The existing methods enable e�cient privacy risk assessments for service
operators to fast adjust the quality of sensing data to lower privacy risk by using prediction models. However, for these
prediction models, most of them require massive training data, which has to be collected and stored �rst. Such a large-scale
long-term training data collection contradicts the purpose of privacy risk prediction for new urban services, which is to
ensure that the quality of high-risk human mobility data is adjusted to low privacy risk within a short time. To solve this
problem, we present a privacy risk prediction model based on transfer learning, i.e., TransRisk, to predict the privacy risk for
a new target urban service through (1) small-scale short-term data of its own, and (2) the knowledge learned from data from
other existing urban services. We envision the application of TransRisk on the tra�c camera surveillance system and evaluate
it with real-world mobility datasets already collected in a Chinese city, Shenzhen, including four source datasets, i.e., (i) one
call detail record dataset (CDR) with 1.2 million users; (ii) one cellphone connection data dataset (CONN) with 1.2 million
users; (iii) a vehicular GPS dataset (Vehicles) with 10 thousand vehicles; (iv) an electronic toll collection transaction dataset
(ETC) with 156 thousand users, and a target dataset, i.e., a camera dataset (Camera) with 248 cameras. The results show that
our model outperforms the state-of-the-art methods in terms of RMSE and MAE. Our work also provides valuable insights
and implications on mobility data privacy risk assessment for both current and future large-scale services.
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1 INTRODUCTION
Many large-scale urban services have explicitly or implicitly collected anonymized mobility data of residents to
understand personal mobility patterns, e.g., cellphone data (CDR and Connection) [27][28], vehicular GPS data
(Vehicles) [34], and electronic toll collection data (ETC) [36]. Unfortunately, while providing the improvement
for urban services, the collection of human mobility data is sensitive because it is shown by the previous works
[9][10] that it is possible to re-identify users from the dataset. So before the large-scale data collection, for privacy
protection, the operator may need to understand the privacy risk by utilizing the privacy risk measurement
approaches, i.e., the attack models, which identify the probability of a user’s trace being exposed by an attack
(see formal de�nition in Section 2.2). However, it is challenging to e�ciently assess the privacy risk of users by
privacy risk measurement approaches because most of them are based on the high time complexity matching
functions.

To solve the e�ciency issue, some works have been proposed based on the predictive Machine Learning model
to approximately measure the privacy risk. For example, Pellungrini et al. [25] presents a privacy risk prediction
model based on Random Forest to predict the privacy risk with the extracted mobility features of the users from
vehicular data; Rocher et al. [29] utilizes a generative model to estimate the success of re-identifying users from
the crowd given incomplete demographic data. Nevertheless, most existing predictive approaches measuring the
privacy risk are based on long-term data (e.g., one-month data) to achieve a higher prediction accuracy. However,
for a newly deployed urban service, if the service operators want to set up the spatial-temporal granularity of the
collected data to balance the data utility and potential privacy risks, the ideal case is to collect short-term data to
assess privacy risks �rst without direct large-scale �ne-grained data collection (details in Section 2.3). In this
case, the existing works were not applicable given their requirement for long-term training data.

One solution is to use data already collected in other services, complementing short-term data of a new service
to assess the privacy risks of this new service without collecting large-scale data of this new service. In particular,
lots of data from existing urban services have been collected and shared with the research community, and the
privacy risk of data from these services has been properly assessed (e.g., cellphone[9], vehicles[25]). Meanwhile,
transfer learning has shown its e�ectiveness in the privacy and security community. For example, [26] proposes
an asymmetric multitask learning approach for image data to transfer a view-invariant representation from the
source dataset to an unlabelled target dataset. [18] also presents a deep domain adaptation model to perform the
cross-domain person re-identi�cation by utilizing the domain-invariant and speci�c features of images. Inspired
by these works, to explore the feasibility of using the collected data, we present a mobility privacy risk prediction
model based on transfer learning called TransRisk. TransRisk predicts the privacy risk of users of a new service
based on (1) a target dataset with short-term mobility data newly collected from this new service, and (2) a source
dataset with long-term mobility data legally collected from another service.

However, employing transfer learning for privacy risk assessment also brings some new challenges. (1) Most
previous prediction models for privacy risk assessment utilize the aggregate mobility features of users from the
dataset to predict the privacy risk. Simply utilizing the same aggregate mobility features may not be e�ective
to transfer learning privacy risk prediction. (We show a detailed analysis in Section 2.4.) (2) Two records from
two mobility datasets with similar spatial-temporal information may have di�erent in�uences on the privacy
risks due to user behaviors in di�erent datasets. The model should be able to capture global in�uences for all
spatial-temporal records. For example, a CDR record in a company during o�ce hours may have a lower in�uence
on the user’s privacy risk compared to that of a record in late-night, because there might be many phone calls
during o�ce hours in a company. While a vehicle record in the same place and at the same time may have a
higher in�uence because there might not be many vehicles driving during o�ce hours, especially in an industrial
region.
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To address the above challenges, (1) we unify the spatial granularity of all mobility datasets by a spatial-temporal
tensor to represent the spatial and temporal information of users, which remains the detailed spatial-temporal
information of the user, instead of the aggregate mobility features; (2) we employ an attention-based convolution
layer to capture the global in�uence of each unit in the spatial-temporal tensor.
To evaluate the applicability of TransRisk to real-world applications, we envision that TransRisk could be

applied to assist the tra�c camera surveillance system in a city. In some cases, the government of a city may
utilize the tra�c camera surveillance system to capture the vehicle that violates the tra�c rules, and publish the
information of the violation, including the plate number, location, time, etc [11]. By employing TransRisk, the
government could set up a safety data con�guration to protect the people or regions with high privacy risks.
Hence, in this paper, we regard the camera dataset as the target dataset and evaluate TransRisk on it with various
source datasets. The key contributions of this paper are as follows.

• To the best of our knowledge, we conduct the �rst case study on the mobility privacy risk prediction based
on transfer learning across heterogeneous mobility datasets. In particular, our study on �ve large-scale
mobility datasets covers a broad spectrum of spatial and temporal granularity. The large-scale study enables
us to compare these datasets and analyze them for valuable insights.

• We present an e�cient mobility privacy risk prediction model, TransRisk, to predict the privacy risk of
users based on transfer learning. Compared to previous work, TransRisk uni�es multiple mobility datasets
and employs an additional input, spatial-temporal tensor, to represent the spatial-temporal information of
users from mobility data. Also, we design multiple embedding sequential layers for multiple inputs from a
source dataset and a target dataset and design multiple loss functions to train our model simultaneously.

• We implement TransRisk in Shenzhen based on at least one month of real-world data from multiple real-
world datasets (details in Section 2.1).We evaluate TransRiskwith di�erent combinations of existingmobility
datasets as source data for comprehensive analyses on target data, i.e., camera data. Our results reveal some
valuable insights regarding the impact of source datasets on privacy risk prediction. A comprehensive
comparison studywithmultiple state-of-the-art methods is provided in detail and the results show TransRisk
improves the prediction performances in terms of RMSE and MAE, given the short-term data.

The rest of the paper is organized as follows. Section 2 introduces the background and motivation of this paper.
Section 3 shows and describes the design of our method. Section 4 shows the evaluation result of our method
and the baselines with di�erent metrics and factors. Section 5 reviews the related work. Section 6 presents some
discussions about limitations, potential implications, and privacy and ethics. Section 7 concludes the paper.

2 BACKGROUND AND MOTIVATION
In this section, we �rst introduce the details of the source datasets collected from the real-world urban services
for analyses in motivation. Then we show the de�nitions of re-identi�cation attack and privacy risk. Finally, we
investigate the advantage of transfer learning and inputs beyond aggregated mobility features.

2.1 Datasets
We have access to one-month real-world data sets from several service providers and the Shenzhen Committee
of Transportation (SCT). As shown in Table 1, we consider four categories of data sets from four urban mobile
systems, i.e., (i) vehicles GPS data from a vehicular insurance tracking system, (ii) cellphone CDR data from a
cellphone system, (iii) cellphone connection data from a cellphone system, and (iv) toll transaction data from an
electronic toll collection system, which detect individual mobility patterns from four combinations of di�erent
extents of spatial granularity and temporal continuity. In particular, because the mobility features of users for
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each dataset on weekdays and weekends are signi�cantly di�erent, in the rest of this paper, for one-week data,
we only consider the data on weekdays.

• Vehicular GPS dataset (Vehicles) covers the locations data of 10 thousand vehicles in Shenzhen, where
their records were collected every 10 seconds. The data was collected through onboard devices installed
inside vehicles, which are mainly used for insurance purposes. This dataset includes the 1.2 TB data from
January 2016 to February 2016, containing the GPS locations of all involved vehicles when they are turned
on.

• Call detail record dataset (CDR) and cellphone connection dataset (CONN) include the coarse-grained
spatial information (tower locations) and temporal information of cellphone users, which the total size of
the dataset is around 650 GB. CDR data was collected when cellphone users use their cellphones for phone
calls and sending messages. While CONN data was collected when cellphone users use their cellphones for
network connection. Both of them contained more than one million active users in October 2013 from 5
thousand towers in Shenzhen.

• Electronic toll station dataset (ETC) includes the coarse-grained spatial information (toll station locations)
and the discrete temporal information of toll station transactions for June 2016 which were collected when
vehicles enter and left the highway in Shenzhen. In particular, the data size is around 900 MB and 85 toll
stations were capturing 6.5 thousand vehicles per hour.

Table 1. Details of Datasets
Mobility
Datasets

# of
ID

# of
Days

Daily
Records

Spatial
Granularity

Temporal
Continuity

Vehicles 10K 2 months 13M GPS
(153.86<2)

Continuous
(Per 30 sec)

CDR 1.2M 1 month 14M Tower
(0.57 :<2) Discrete

CONN 0.78M 1 month 152M Tower
(0.57 :<2)

Continuous
(Per 2 min)

ETC 156K 1 month 818K Station
(25.3 :<2) Discrete

2.2 Re-identification A�ack and Privacy Risk
2.2.1 Definition of Re-identification A�ack. We use one re-identi�cation attackmodel de�ned in [9] to quantify
the privacy risk of users from a mobility dataset in this paper. This attack model envisions an adversary having
access to a public dataset where many users’ traces were anonymized. And he/she knows for sure a user * ’s
partial information via a separate data source or real-world observation, e.g.,  leaked spatial-temporal records.
For example, if the adversary knows when* leaves her home and when * arrives at her work, the adversary
uses these  = 2 spatial-temporal records to �nd which trace belongs to* in the public dataset.
Formally, we de�ne one attack as a matching function " = ( , (,⌫). ⌫ is an anonymized set of traces (i.e.,

a spatial-temporal record sequence) and each trace belongs to a user. In the matching function, we uniformly
sample  spatial-temporal records to obtain an arbitrary sequence ( (which is the leaked  spatial-temporal
records) from a trace ( belonging to a particular user (( 2 ⌫). Based on ( , we search a trace subset 1 (( ) from ⌫
such that ( 2 1 (( ) and �nd out how many traces are in 1 (( ). A trace ( is characterized as re-identi�ed if
|1 (( ) | = 1. The matching function returns 1 if |1 (( ) | = 1 and returns 0 otherwise.

2.2.2 Definition of Privacy Risk. The privacy risk of a user is regarded as the probability of the user being
re-identi�ed from a dataset by an adversary with the re-identi�cation attack model. In this paper, given the above
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re-identi�cation attack model, we de�ne the privacy risk of a user* as

%A (* ) =
#’
8=1

" ( , (,⌫)
#

, (1)

where " ( , (,⌫) is the matching function de�ned in Sec.2.2.1, 8 is a counter, and # stands for the total times
that we simulate the re-identi�cation attack (we set it to 100 in this paper).
Because the matching function has a very high time complexity, existing privacy risk prediction models

learn a function 5 to predict the privacy risk, instead of using the matching function" , i.e., %A (* ) = 5 ( , (,⌫).
Compared to them, our goal is to learn the 5 function through transfer learning, which is de�ned in Section 3.

Fig. 1. Privacy Risk Evolution with  = 4 (The x-axis de-
notes the number of days of data is used for calculating
the privacy risk, and the y-axis denotes the average user
privacy risk of the users involved in the corresponding
data.)

Fig. 2. Privacy Risk Contour for Vehicles with  = 4 (The
spatial granularity denotes the area of a cell in a grid with
a specific side, e.g., the area of a cell in 1:< ⇥ 1:< grid is
1(:<)2.))

2.3 Why Privacy Risk Prediction with Short-term Data
To study the impact of date length of mobility data on the privacy risk of users, we measure the average privacy
risk of users from three weeks of data of four mobility datasets, including CDR, Connection, ETC, and Vehicles. In
particular, according to our measurement and the previous study[5] on the uniqueness at GPS level, for the vehicle
data with original spatial granularity at GPS level, it is able to identify it from the crowd with 90% probability
even we only know one of its accurate records. However, this kind of attack is not practical because it is almost
impossible to obtain the exact GPS data of a vehicle externally. We try di�erent sizes of spatial granularity
and temporal continuity to discretized the vehicle data and analyze the privacy risk as shwon in Figure 2. The
choice of discretization has a signi�cant impact on the privacy risk. To avoid the very high privacy risk and
very low privacy risk that may cause imbalance issues to the prediction, we prefer to use an intermediate spatial
granularity. So, we measure the vehicular system privacy in the setting of 1:< square grids (i.e., dividing a city
into a grid where each cell is 1:< ⇥ 1:<).
From Figure 1 we �nd the privacy risk of users increases with the increase of the length of days for each

mobility dataset. For example, the user privacy risk of three weeks (15 weekdays) cellphone Connection data is
around 38% while that of one-day cellphone Connection data is only 18%, which increase more than 110%. On
the other hand, the increases for all datasets start to be �at after one week. From the result, we argue that it is
necessary to predict the privacy risk with short-term data to reduce the privacy risk of users when a new urban
service starts to collect data. Besides, the result shows the privacy risk of 15 weekdays data could be used as the
label for users of mobility dataset because it is more stable than the privacy risk of data within one week.
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Fig. 3. Distances Comparison

2.4 Why Aggregate Mobility Features are Not Enough for Transfer Learning
We obtain the scatter plot where each dot in the �gure is representing one user from the source dataset (e.g.,
CDR) and one user from the target dataset (e.g., Vehicle). The X-axis is the absolute distance between these
two users’ privacy risks, and the Y-axis is the l2 pairwise distance between their aggregated mobility features.
The aggregated mobility features of users from each dataset are de�ned in Section 3. We show the result for
each dataset in Figure 3. We �nd most dots do not lie close to the diagonal line in the �gure, which means the
short distance between two users’ mobility features does not equal the short distance between their privacy
risks. Hence, only using aggregated mobility features is not enough for transfer learning privacy risk prediction.
One possible reason is the aggregated mobility features may lose some important information because of their
di�erent spatial granularity and temporal continuity. For example, a trip in the Toll Collection (ETC) dataset
might only contain two records for one vehicle in general, while the trip in Vehicles GPS dataset could collect a
dense trace of one vehicle. These two captured trajectories of the same trip have the same travel distance but
their privacy risk levels are di�erent because every day there should be multiple vehicles traveling between
two stations on a highway (meaning low risk) but it is hard to �nd two vehicles that have exact the same dense
spatial-temporal trajectory (meaning high risk). To solve this issue, in Section 3, besides the aggregated mobility
features, we employ the spatial-temporal tensors as the additional input for source and target datasets.

3 DESIGN
In this section, we �rst show the overview of TransRisk. Then we introduce the detail of two inputs for embedding,
i.e., the aggregated mobility feature vector and spatial-temporal tensor. Finally, we present layers for embedding
and transfer learning for TransRisk and the involved loss functions.

3.1 Overview of TransRisk
Figure 4 shows the architecture of TransRisk, which includes two phases, i.e., the feature embedding phase and
the knowledge transferring phase. The feature embedding phase contains two sequences of layers to embed
source input (one trajectory of a user from source dataset) and target input (one trajectory of a user from target
dataset) to obtain the embedding features, i.e., (1) TransRisk calculates the mobility features for a user (from
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Fig. 4. Framework of TransRisk

source or target input) given her/his trajectory data and then feed the features into a neural network to obtain
one feature vector; (2) TransRisk calculates the Spatial-Temporal Tensor for a user (from source or target input)
given her/his trajectory data and then feed the tensor to an attention network to obtain another feature vector.
(3) concatenate two output feature vectors into one feature vector to obtain an embedding feature vector. With
the embedding features from source and target, in the knowledge transferring phase: (1) TransRisk utilizes a
pairwise distance calculation function to compute the distance between the embedded features of source and
target inputs and then calculate the loss between this distance with the label distance, i.e., the separation loss; (2)
TransRisk employs a fully connected layer to obtain a predicted label for the source input and then calculate
the corresponding loss as well, i.e., the regression loss; (3) TransRisk learns the weights for the privacy risk
prediction of source data through the training of regression loss and then transfers the learned weights to target
data through the training of separation loss.

3.2 Spatial-Temporal Tensor
To unify spatial-temporal trajectories of each mobility dataset into one standard, we employ the spatial-temporal
tensor (ST tensor) ) to represent the regular spatial-temporal mobility patterns of a user from a mobility dataset.
We map the spatial information of a city to a geospatial grid⌧ with '⇥⇠ grid cells 28, 9 , where⌧ = 21,1, 21,2, . . . , 2',⇠
(' is 120 and ⇠ is 60). Then each visitable location in a mobility dataset could be associated with a grid cell based
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on its coordinate {longitude and latitude}. We divide one day into # time slots and let ) be a tensor with #
matrices, where # is 12 and each time slot is 2 hours. Each matrix in a one-time slot has ' rows and ⇠ columns,
which are equal to the numbers of rows and columns for the grid of the city after the mapping. This matrix is
de�ned as the probability matrix indicating the probability of a user visits a place at a time slot.

Location c1,3
Timestamp t1

grid of t1 grid of t2 grid of t3
Location c2,2
Timestamp t2

Location c3,1
Timestamp t3

c1,3

c2,2

c3,1

c1,3 c2,2 c3,1

c1,3,

c2,2

c3,1

… … c1,3 c2,2 c3,1

c1,3

c2,2

c3,1

… …
Transition Matrix (t1 to t2) Transition Matrix (t2 to t3)

c2,2

c3,1

Probability Matrix 
t2

Probability Matrix 
t3

Fig. 5. Example of ST tensor

Figure 5 shows an example of how we obtain the probability matrices for a user. The left top map in �gure 5
shows the whole trace of one user from a mobility dataset that contains only three records. After mapping, we
obtain three grids for this trace where the color in a grid cell indicates the frequency of the user visits to that cell,
and two transition matrices, i.e., transition matrices from C1 to C2 and C2 to C3. The color is deeper if the frequency
is higher, as well as that for the transition matrix. Given the frequency grid of C1 and the transition matrix for C1
to C2, for cell 22,2 in grid C2, we sum the products of each frequency in grid C1 multiply its transition probability to
22,2. We do this calculation for each cell of the grid to obtain the probability matrix for C2. Similarly, we obtain
the probability matrix for C3. Note that there are # transition matrices for one day and the last transition matrix
indicates the transition probabilities between cells from timestamp C# to C1.
Formally, an entry )8 9: in ) is de�ned as the probability of the user visits 28, 9 at time slot : . By assuming a

user’s transition between locations follows the Markov property [33], we have

)8 9: ⇡
',⇠’

A=1,2=1
�A ,2,:�1)A2A ,2 ,28,9 ,:�1 (2)

The �rst term in the above equation indicates the normalized visited frequency of a grid cell 2A ,2 for the user at
time slot : � 1. The second term is a transition function that return the transition probability of the user transit
from grid cell 2A ,2 to grid cell 28, 9 . We utilize the probability matrix instead of the frequency matrix to reduce the
impact from the noise of data collection, such as the ping-pong e�ect (happens when the strength of signals
of cell tower change signi�cantly and will lead to abnormal records) for CDR data because the normal records
will be dominated in the computation of probability. In addition, only the frequency matrix may not include
the temporal transition of the trajectory data. Here, for data with a long time interval between two records, e.g.,
CDR, we will assume the user stays in the same place until a new record emerges.
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3.3 Aggregated Mobility Feature Vector
In TransRisk, we also utilize aggregated mobility features to represent a user in a mobility dataset, which is
extracted from his/her spatial-temporal trajectory. The mobility feature of a user is denoted as a vector - . In this
paper, we utilize the classic personal aggregated mobility features de�ned from the previous works[25][2].

• Random Entropy (RE):We utilize the method from [12] to calculate random entropy of a user. It calculates
the predictability of user visited locations based on the assumption that the user will visit each location
with equal probability.

• Uncorrelated Entropy (UE): We utilize the method from [23] to calculate the uncorrelated entropy of
a user. This method calculates the predictability of visited locations of the user based on the historical
visiting probability of each location without considering the temporal correlation.

• Real Entropy (Enp): We utilize the method from [31] to calculate the real entropy of a user. This method
calculates the predictability of visited locations of the user based on the historical visiting probability of
a time-ordered sub-sequence of the trajectory of the user. This method considers not only the historical
visiting probability of locations but also the temporal order of locations.

• Number of Visited Locations (NV): It computes the daily number of locations a user visited.
• Maximal Distance from Home (MDH): It computes the maximal geographic distance between a user’s
home and a location the user visited. Here the home of a user is de�ned as the most frequently visited place
of the user during the early morning and late night.

• Number of Distinct Visited Locations (NDV): It computes the daily number of distinct locations a user
visited.

• Distance of Straight Line (DSL): It computes the total geographic travel distance of a user during a trip.
We choose the maximal one from trips during the measurement period.

• Maximal Distance (MD): It computes the maximal geographic travel distance between two consecutive
spatial-temporal records of a user.

• Radius of Gyration (RG): The radius of gyration is the characteristic distance a user traveled during a
trip, i.e., the distance between the origin and the geographic mass center of the spatial-temporal records
during the trip. We choose the maximal one from trips during the measurement period.

• Waiting Times: It computes the time di�erence between any two temporal consecutive spatial-temporal
records in the trajectory of a user. In particular, we use the mean (MWT) and standard deviation (SWT) of
the waiting times as two mobility features of a user.

• Jump Lengths: It computes the spatial distance between any two temporal consecutive spatial-temporal
records in the trajectory of a user. In particular, we use the mean (MJL) and standard deviation (SJL) of the
jump lengths as two mobility features of a user.

3.4 Deep Transfer Learning
TransRisk has two phases, i.e., the feature embedding phase and the knowledge transferring phase.

3.4.1 Feature Embedding. In the feature embedding phase, TransRisk is given 1) a massive labeled training data
⇡B = (- B8 ,) B8 ,~B8 , !B8 ) from the source dataset, where - B8 is the mobility feature vector of user 8; ) B8 is his/her ST
tensor; ~B8 is the corresponding short-term label (privacy risk) in source dataset; !B8 is the corresponding long-term
label (privacy risk) in source dataset; 2) a few labeled training data ⇡C = GC8 ,~

C
8 from the target dataset, where - C8 ,

) C8 , and ~
C
8 are the mobility feature vector, ST tensor, and short-term label of user 8 in target dataset. TransRisk

utilizes the same deep learning layers to embed -8 and )8 to obtain an embedding feature vector as shown in
�gure 4. Formally, we design a embedding function 6 to obtain the embedding feature vector, i.e.,

6 = 2>=20C (65 (-8 ),62 ()8 )) (3)
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The the concat function in above equation is a function to concatenate the outputs of 65 (-8 ) and 62 ()8 ), where
65 (-8 ) is a fully connected layer (input dimension is 14 and output dimension is 8) followed by a relu layer; 62 (-8 )
is two attention-based convolutional layers[3] and a �atten layer where each attention-based convolutional
layer followed by a pooling layer. The input channel, output channel, and kernel side of �rst attention-based
convolutional layer are 24, 8, and 3. The input channel, output channel, and kernel side of �rst attention-based
convolutional layer are 8, 4, and 3. We use an attention-based convolutional layer instead of a traditional
convolutional layer to capture the global information of the ST-tensor.

3.4.2 Transfer Learning. The goal of the transfer learning phase is to learn a function 5 that predicts the label of
unlabeled users from the target dataset based on the assumption that there exists a covariate shift[21] between
embedding features from source dataset ⇡B and target dataset ⇡C . To achieve this, we de�ne the function 5 as

5 = 5B (⌘(6B )) + 5B0 (3 (6B ,6C )), (4)

where ⌘ is a fully connected layer to predict a privacy risk given 6B and 5B is a !2 loss function, where its label is
!B8 . 5B0 (3 (6B ,6C )) is a separation loss function[21]. 5B0 (3 (6B ,6C )) calculates the loss for pairs of users (6B and 6C )
from source dataset and target dataset. Here 3 is a distance measure function de�ned as

3 (6B ,6C ) = 1
2
| |6B � 6C | |2, (5)

where | | · | | is the Frobenius norm. The label for 5B0 is the absolute value of the di�erence between the short-term
labels of users from source data and target data.

Data Flow: (1) Given the trajectory of a user from source dataset ⇡B and the trajectory of the target user from
⇡C , TransRisk �rst converts each trajectory data into a mobility feature vector - and a spatial-temporal tensor ) .
(2) In a sequence of embedding layers, the aggregated mobility features are fed into a fully connected layer, and
the spatial-temporal tensor is fed into the attention-based convolutional layers followed by a �atten layer. (3)
The outputs of the above two layers are concatenated into one feature vector. (4) In transfer learning, there are
two data streams, i.e., the embedding feature 6B from the source input and the embedding feature 6C from the
target input. (5) The model feeds 6B into ⌘, a fully connected layer, for the training of the regression loss 5B . (6)
The model feeds the corresponding 6B and 6C into 5B0 to calculate the pairwise distance for the training of the
separation loss. (7) The goal of the transfer learning module is to minimize the total loss, i.e., 5B + 5B0 .

3.5 TransRisk+: an Ensemble Predictor
Given a target dataset and a source dataset, they might have a signi�cant di�erence (might be kilometers level)
either on spatial granularity or temporal continuity or both. This might cause low transfer accuracy. To explore if
we can use multiple source datasets to improve the accuracy of prediction, we also design an ensemble learning
version of TransRisk to predict the privacy risk based on the output of multiple TransRisk models, where each
one is trained by the target dataset with a source dataset. The model is called TransRisk+. Therefore, TransRisk+
utilizes multiple corresponding base TransRisk modules for these multiple source datasets and obtain multiple
possible privacy risks for users from a target dataset. Then TransRisk+ feeds the possible labels into an ensemble
function to obtain the �nal predicted label. TransRisk+ utilizes a classic gradient-boosted-decision-tree (GBDT)
regression function[13] as the ensemble learning module to predict the privacy risk for the target user, where the
loss function is the Friedman MSE [13].

4 EVALUATION
In this section, we �rst introduce the data management, ground truth, evaluation setting, including the metrics,
and the baselines. We then show the result of the comparison of TransRisk and baselines. Then, we evaluate
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TransRisk+ with a baseline by using all source datasets as input. Finally, we show a heatmap about the privacy
risk for the regions in Shenzhen.

4.1 Data Management and Processing
To manage and process �ve massive datasets, we employ a high-performance cluster with two open-source
data processing frameworks, i.e., Hadoop and Spark. In particular, the cluster includes: (i) 12 Hewlett-Packard
machines with 2 Tesla K80c each; (ii) 10 Dell machines with 4 Tesla K80c each; (iii) 4 Xeon E5-2650 with a half TB
memory each; (iv) A series of 800GB SSD and 15TB of spinning-disk spaces; (v) 2 PB additional disk space.

4.2 Ground Truth
We use �ve datasets used for the evaluation of TransRisk, including four datasets already de�ned in Section
2.1, i.e., CDR, Connection, ETC, Vehicle, and a target dataset, i.e., Camera. In particular, we apply the attack
model to the data and obtain the privacy risk. With the measured privacy risk and the extracted mobility features,
we obtain the training data and the testing data. In our evaluation, all involved data only includes records on
weekdays.
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Fig. 6. Study Spectrum of Mobility Datasets

4.2.1 Data Granularity Spectrum. A key question to our approach is which dataset is appropriate to be used as
the source dataset. Given various existing mobility datasets, it is very challenging, if not impossible, to try all
the popular datasets as the source datasets. To address this issue, we quantify mobility datasets by two themes,
i.e., spatial granularity and temporal continuity, as shown in Figure 6. For example, the vehicular GPS data for
usage-based insurance [20] in the top right corner has the highest spatial granularity and the highest temporal
continuity (e.g., GPS data with 10-second uploading intervals). In contrast, the electronic toll collection system in
the bottom left corner has the lowest spatial granularity and temporal continuity. We argue these two themes
are fundamental because they quantify the interactions of urban service systems with their users by (i) how
�ne-grained the locations we have (e.g., at the level of GPS or a cellular tower) and (ii) how fast we update the
interactions (e.g., periodically every 10 seconds, or on-demand event-based updating such as a phone call). With
these two themes, TransRisk utilizes four mobility data sets in the four corner cases (the bold boxes in Figure 6)
to explore which source dataset could achieve the best prediction accuracy given on short-term data, which
might cover the spatial granularity and temporal continuity of most urban mobility datasets.
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4.2.2 Target Dataset. In our setting, we need to choose the camera dataset as the new mobility dataset. Hence,
we utilize two-month tra�c camera data from Shenzhen. The tra�c cameras in Shenzhen concentrate on the
downtown of Shenzhen. The road network in Shenzhen contains 73 thousand intersections and 101 thousand
road segments, of which 248 intersections are equipped with tra�c cameras. We use two-month vehicle data
generated from the camera surveillance records at these 248 intersections as our target dataset.

4.3 Evaluation Se�ing
4.3.1 Metrics. We use the root-mean-square error RMSE and mean-absolute error MAE as two criteria to
measure the accuracy of TransRisk and baselines with a range from 0 to 1 inclusively, where 0 represents the
best, and 1 represents the worst.

4.3.2 Baselines. We compare TransRisk (TR in the rest �gures) with four baselines as follows.
• Random Forest (RF): [25] extracts mobility features from the spatial-temporal trajectory of users to
represent the pro�le of users. Given the mobility feature vector of a user, [25] utilizes a Random Forest
prediction model to predict the privacy risk of the user. In our evaluation, we use 500 estimators and use
;>62 of the number of attributes as the maximal number of attributes for each estimator.

• K Nearest Neighbor (KNN): K Nearest Neighbor[1] provides a non-parameter learning method for class
prediction. Given the mobility feature vector of a user, KNN searches neighbors with the most similar
mobility features and predicts the label of the user, the number of neighbors is set to 5.

• Decision Tree Learning (DT): Decision Tree Learning [30] is a classic prediction model that has been
used in many �elds. Given the mobility feature vector of a user, the decision tree learning uses a decision
tree to check each mobility features and concludes the privacy risk of the user. In this evaluation, we also
set ;>62 of the number of attributes as the maximal number of attributes for the decision tree.

• TrAdaboost (TA)): TrAdaboost is a classic multiple source transfer learning regression model [24], which
is based on Adaboost algorithm. Compared to the above baselines, the input of this method is the mobility
feature vectors of the users from source datasets and the mobility feature vector of the user from the target
dataset. We use 20 estimators in TrAdaboost and set the number of iteration steps to 10.

• TransRisk- (TR-): TransRisk- is a variant version of TransRisk wherein the feature embedding we only
utilize the ST tensor as input without aggregated mobility features. This version of TransRisk is a variant
of the classic deep transfer learning model for image data.

• TransRisk+ (TR+): To explore if multiple source datasets could improve the accuracy, we also evaluate
TransRisk+ with multiple combinations of source datasets.

In the evaluation, we regard 10% of target data as training data and 90% as test data since there might be only a
few labeled target data for new urban services. On the other hand, for one source dataset, we use all records for
training. Given the cluster, the training time of TransRisk is less than 24 hours, and the prediction time of one
record is less than 1 second. Compared with the high time complexity of privacy risk measurement, prediction
with models could reduce the latency signi�cantly.

4.4 Evaluation
We �rst compare TransRisk with di�erent baselines on the Camera dataset and study the impact of di�erent
factors, i.e., data volume, and source dataset. Then we show the e�ectiveness of TransRisk on di�erent mobility
datasets and the performance of TransRisk+.

4.4.1 Comparison on Camera Dataset. Figure 7 shows the RMSE and MAE of TransRisk and baselines under
di�erent numbers of K (de�ned in section 2.2) where TransRisk and TransRisk- are trained by using vehicles
data as source data. We �nd TransRisk and TransRisk- have very similar performances with di�erent values of K.
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Fig. 7. Performance of One Week Data

TransRisk has the best performance on  = 2 and  = 3 while TransRisk- has a better performance on  = 4
compared to TransRisk. The baselines have slightly worse performance. In particular, TrAdaboost has the lowest
accuracy. One possible reason is that TrAdaboost regards the mobility feature vectors of all source datasets in the
same way, which may deteriorate its performance. On the other hand, we also utilize 35 days of camera data
with  = 3 to train three baselines (including RF, KNN, and DT), where 80% of data are used for training. The
performances of these three baselines are much better than TransRisk, where their RMSE is around 0.05 and
MAE is around 0.03. However, TransRisk only requires the short-term and small amount of data for training,
which can greatly reduce the budget of evaluating the privacy level of a speci�c data collection policy.

(a) RMSE of 7 Weeks (b) MAE of 7 Weeks
Fig. 8. RMSE and MASE of All Methods on 7 Weeks Data (K=3)

4.4.2 Impact of Training Data Volume. With the massive daily uploaded data, there will be more training data
fed to the predictive privacy measurement models. Therefore, the performances of TransRisk and baselines may
be improved with increasing training data. To study the impact of training data with di�erent lengths of days,
we generate training data from 1 day to 35 days (only including the weekday data, i.e., around seven weeks).
Figure 8a and Figure 8b show the evolution of the RMSE and MAE for TransRisk and three baselines when  = 3.
We �nd that, with the increasing data, the performances of all methods are improving. In particular, TransRisk
has a signi�cantly better performance in terms of RMSE compared to other baselines. While in terms of MAE
TransRisk is only slightly better than others. One possible reason is the distribution of privacy risk of camera
data focused on a narrower range of values.
Figure 9 shows the performances of TransRisk, TransRisk-, and TrAdaboost on camera data with di�erent

source datasets. We �nd all source datasets have similar performance for TransRisk. In particular, TransRisk-
has similar performance compared to TransRisk except the case using vehicles data as source data. One possible
reason might be that when Vehicles data and Camera data have similar mobility features, their privacy risk is
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Fig. 9. Performance of Di�erent Data Sources

quite di�erent. The result in Figure 9 shows TransRisk is robust for the Camera dataset with di�erent source
datasets with : = 3 and one-week training data.

Fig. 10. RMSE Grid of TransRisk with K=2

4.4.3 E�ectiveness on Di�erent Datasets. To study the e�ectiveness of TransRisk on di�erent mobility datasets,
we evaluate TransRisk with di�erent source and target pairs paired by the �ve datasets, i.e., CDR, CONN, ETC,
Vehicles, and Cameras. Figure 10 shows the RMSE grids for these pairs with  = 3 and three-week training data.
We �nd when using CDR as source data, ETC as target data, TransRisk has a very bad performance. While using
Camera and CDR as target data, transRisk always has a good performance (under 0.08) in terms of RMSE. This
might be caused by the fact that ETC data has a signi�cantly coarser spatial granularity compared to others.

4.4.4 Distribution of Predicted Privacy Risk and Groundtruth. We show the CDF for the predicted privacy risk
and the ground truth for using vehicles data as source dataset and camera data as target dataset with  = 3 and
one-week data. We found the predicted privacy risk concentrated on the range from 0.8 to 1, which is the most
portion of the ground truth value.

4.4.5 Predicted Label Distribution. In addition to privacy risk, identifying if a user is a "high risk" user or not is
also important. Therefore, we also change the regressor into a classi�er and divide the privacy risk into three
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Fig. 11. CDF of Predicted Privacy Risk and Groundtruth Fig. 12. Predicted Labels Grid

levels, i.e., Low risk, Medium risk, and High risk. We use the F1 score as the criteria to measure the accuracy
of our model with a range from 0 to 1 inclusively, where 0 represents the worst and 1 represents the best. The
metric will be used in section to show the true label distribution. Figure 12 shows a grid of true label distribution
for each predicted label with  = 3 and one-week training data. For example, the Low column (the most left
one) is for the users who are marked by TransRisk as the low-risk user, and the number 0.68 in the Low row
indicates there are 68% users whose true label is low risk. From the result, we �nd that most high-risk users are
predicted as they have a high mobility privacy risk. In particular, for the medium risk users, there are 46% of
users are mistakenly predicted as high-risk users.

Fig. 13. RMSE of 3 Weeks Fig. 14. MAE of 3 Weeks

Predicted
Region Risks

Ground Truth
Region Risks Low Risk

High Risk

Fig. 15. Region Risk for Camera Data

4.4.6 Impact of Multiple Sources. To explore the performance of using all sources datasets for prediction, we
design a variant version of TransRisk, i.e., TransRisk+. To evaluate its performance on using all source datasets
(i.e., except Camera data), we compare TransRisk+ with TrAdaboost on data with  = 3 and di�erent lengths of
days (three weeks). Figure 13 and Figure 14 shows TransRisk+ has a better performance than that of TrAdaboost.
Also, we �nd the performances of TransRisk+ improve with the increase of the number of days. Figure 13 and
Figure 14 show TransRisk could be applied to multiple sources scenario. Compared to TransRisk, TransRisk+ has
worse performance than TransRisk at the beginning with very few data. This is because the mobility pattern of
CDR and ETC is quite di�erent from other datasets. However, with more days of data for training being used, the
performance of TransRisk+ is very close to the performance of TransRisk. TransRisk+ could be used for the case
that the mobility pattern of all the source datasets are quite di�erent from the target dataset.

4.5 Visualization of Privacy Risk
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To provide the visualization of privacy risk of camera data, we predict the privacy risk of users in the camera
dataset, and assign the users risk to 491 regions in Shenzhen (the census blocks), e.g., the risk of a region is the
average risk of users who have visited the region. We visualize the region risk in Figure 15 where the red color
indicates lower risk; the yellow color indicates a higher risk. We �nd that most regions have a correct prediction
at the regional level. Also, as shown in the heatmap of ground truth region risk from Figure 15, we �nd the record
density and population density impact the privacy risk, e.g., the regions in the CBD area (circled area) have a
much lower privacy risk, which means the spatial-temporal records collected at these regions have less risk to be
exposed to adversaries.

5 RELATED WORK
5.1 Matching-based Privacy Risk Assessment
The privacy risk assessment for mobility datasets has been widely studied. Most of them propose a re-identi�cation
attack model and utilize a corresponding matching function to measure the privacy risk of users from the mobility
dataset. [9] found that it is able to identify a speci�ed resident from 1.5 million people by only four spatial-temporal
records with 95% accuracy. [10] con�rmed this with the study of a 3-month credit card transactions dataset of 1.1
million people. [35] showed the capability to identify a resident from aggregated mobility data by correlating the
mobile application data and cellular data. Similarly, [17] demonstrates how easy to re-identify people in a nation
wise dataset. [32] measured the probability of physical location privacy leak of people based on the online service
access data via static and mobile devices. [7] measured the capability to identify people when they reveal the
nearby POI by analyzing the uniqueness of POI in �ve di�erent large cities in the world. [19] o�ers a pretty work
for the re-identi�cation of the identity based on the cab traces. These works focus on one or multiple mobility
datasets, and their result reveals the vulnerability of anonymized mobility datasets. However, due to the high
time complexity of their matching algorithm, these assessments might not be applicable to large-scale mobility
datasets given the massive daily uploaded data.

5.2 Prediction-based Privacy Risk Assessment
Recently, some prediction-based privacy assessment methods have been presented to solve e�ciency issues for
these daily updated large-scale mobility datasets. [33] showed the feasibility to predict locations of people by
learning the regularity and conformity of heterogeneous mobility datasets, e.g., vehicles and check-in data. [4]
demonstrates that the socioeconomic status of people is predictable, which is based on the features extracted from
the mobile phone data and reconstruct the distribution of wealth of a nation. [25] presents a decision tree-based
random forest predictive model to e�ciently measure the privacy risk by the extracted mobility features of the
users from the vehicular tracking system. [29] utilizes a generative model to measure the probability of identifying
users from the crowd given incomplete datasets. [22] trains classi�ers to capture the relation between individual
mobility patterns and the privacy risk of individuals. With training with massive measured mobility data, these
models could e�ciently predict the privacy risk of users when the mobility dataset is updated. However, for the
newly deployed urban services, collecting massive data contradicts the purpose of privacy risk prediction. The
operators may want to set up the con�guration for data collection within a short time.

5.3 Transfer Learning in Privacy Study
Many works in the privacy and security community have been proposed based on transfer learning. [15] designs a
transfer learning model to identify persons from images, which utilizes the convolution neural network for feature
extraction. [26] proposes an asymmetric multitask learning approach for image data to transfer a view-invariant
representation from the source dataset to an unlabelled target dataset, which people in the target dataset do not
need to be in the source dataset. [18] also presents a deep domain adaptation model to perform the cross-domain
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person re-identi�cation, which utilizes the domain-invariant and speci�c features of images. These works all
focus on the person’s re-identi�cation from image data. Di�erent from the above works, our work focus on
the re-identi�cation study for mobility data. Our method predicts the user mobility privacy risk based on the
knowledge learned from a source mobility dataset, given the ST tensor and mobility feature vector. Compared to
the existing prediction-based privacy assessment, our work reduces the requirement of the amount of labeled
data for measuring the user privacy risk of a new urban service. To our best knowledge, TransRisk is the �rst
work to focus on the e�cient mobility privacy risk prediction based on transfer learning and explore the impact
of di�erent source mobility datasets with diverse spatial granularity and temporal continuity.

6 DISCUSSIONS
Limitations. In this paper, we only use the data from one Chinese city Shenzhen to study the privacy risk, which
may not be generalized to other counties due to di�erent mobility patterns and cultural diversity. As for other
cities in China, we believe our results can be generalized to other major cities with similar large-scale urban
infrastructures, e.g., Beijing and Shanghai. For smaller cities, it is hard to predict given their limited infrastructure
to capture mobility and lifestyle di�erences, e.g., a shorter commuting distance leads to di�erent features. Further,
we only select four representative systems in Figure 6 as examples to study combinations of spatial granularity
and temporal continuity for privacy study. Thus, our results may not be generalized to other systems with
di�erent combinations. Lastly, the proposed method helps estimate the privacy risk, while it does not have a
privacy guarantee, e.g., security risks brought via transfer learning, which is out of the scope of this work.

Potential Implications. Through the evaluation of TransRisk on the camera dataset, we show the e�ectiveness
of our work on assisting the tra�c camera surveillance system of a city to adjust the data granularity in a short
time. In general, our work has some potential implications for di�erent aspects of the application: 1 For the
government or institute who plan to deploy an urban service under the speci�c privacy policy, e.g., General Data
Protection Regulation [14], TransRisk o�ers an e�cient privacy risk evaluation method for various urban data
collection applications with very few and short-term data to protect privacy before setting up the service on
large scale. Therefore, TransRisk is able to greatly reduce the budget of evaluating the privacy level of a speci�c
data collection policy. (2) For people who concern about the privacy risk or who want to balance their bene�ts of
involvement in an urban service, TransRisk has the potential to assist the decision-making about the participation
or the involvement amount with rigorous theoretical analysis and empirical validation[8][6][16].

Privacy and Ethics. All the data sets are collected under the consent of the urban service users. Our partners
have been removing the user ID and their detailed personal data, so our results did not focus on individual users.

7 CONCLUSIONS
In this work,We conduct the �rst comprehensive study on transfer-learning-basedmobility privacy risk prediction.
We design a novel model to predict the privacy risk of a user based on transferring knowledge from other mobility
data sources. We evaluate our work on real-world mobility data from multiple mobility datasets. Our work
has potential implications for future endeavors in privacy risk prediction, and mobility data protection in the
research community and industries. Going forward, the location data collected from urban services will play an
increasingly important role in smart city development. Therefore, identifying the privacy risk of di�erent data
collecting methodologies in a fast way is crucial for future policy making and privacy preserving technology
development.
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